
Patterns of Safe Collaboration
Alfred Spiessens

Thesis submitted in partial fulfillment of the requirements for
the Degree of Doctor in Applied Sciences

February 2007

Faculté des Sciences Appliquées
Département d’Ingénierie Informatique

Université catholique de Louvain
Louvain-la-Neuve

Belgium

Thesis Committee:
Yves Deville (Chair) UCL/INGI, Belgium
Jean-Jacques Quisquater UCL/DICE, Belgium
Mark S. Miller HP Labs, California
Frank Piessens KUL/DistriNet, Belgium
Peter Van Roy (Advisor) UCL/INGI, Belgium

Patterns of Safe Collaboration

by Alfred Spiessens

c© Alfred Spiessens, 2007
Computer Science and Engineering Department
Université catholique de Louvain
Place Sainte-Barbe, 2
1348 Louvain-la-Neuve
Belgium

Abstract

When practicing secure programming, it is important to understand the restrictive in-
fluence programmed entities have on the propagation of authority in a program. To
precisely model authority propagation in patterns of interacting entities, we present a
new formalism Knowledge Behavior Models (KBM). To describe such patterns, we
present a new domain specific declarative language SCOLL (Safe Collaboration Lan-
guage), which semantics are expressed by means of KBMs.

To calculate the solutions for the safety problems expressed in SCOLL, we have
built SCOLLAR: a model checker and solver based on constraint logic programming.
SCOLLAR not only indicates whether the safety requirements are guaranteed by the
restricted behavior of the relied-upon entities, but also lists the different ways in which
their behavior can be restricted to guarantee the safety properties without precluding
their required functionality and (re-)usability. How the tool can help programmers to
build reliable components that can safely interact with partially or completely untrusted
components is shown in elaborate examples.

i

Acknowledgments

First of all, I want to thank my thesis advisor professor Peter Van Roy for giving me
the opportunity to become a PhD student in his group, and for his valuable guidance
and enthusiastic support of my research work. I consider myself very lucky to have
been part of a research team that was constantly driven by his enthusiasm for good
software research, and could always count on his relentless energy to turn bad news
into challenging opportunities.

I am grateful to the members of my thesis advice committee for their advice and
assistance at different stages of the preparation of my thesis: professor Jean-Jaques
Quisquater, professor Peter Van Roy, and Dr. Mark Miller. They all had a decisive
influence on the contents of this thesis, as they wisely advised me to include a more
formal aspect into my research, advice I came to appreciate a lot.

Without any doubt, Mark Miller was my most committed mentor and ally in the
quest for secure software. To him I owe my current understanding of the role and
the importance of capabilities for secure software. I am especially grateful for the
many occasions on which he flew over to Belgium to work together and give me the
opportunity to learn from his tremendous experience in capability based security and
language design. The basis for the work presented in this thesis was laid during a three
week session, partially spent discussing in the quiet of the Belgian Ardennes.

I want to thank professor Frank Piessens for the interesting discussions we had on
secure software and for his encouraging comments, and professor Yves Deville, the
chairman of my thesis committee.

To my coworkers in the MILOS project and in the Distoz research group I am
grateful for their encouragements and for the many discussions we had on capability
based security and software engineering principles and practices. I thank the Walloon
Region for funding the MILOS project.

I thank especially Dr. Luis Quesada for the fruitful collaboration which resulted
in a common chapter in this thesis and Raphaël Collet for his collaboration and co-
authorship on declarative on-demand computation in Mozart/Oz and his guidance in
constraint programming.

I thank Yves Jaradin especially for his support and patient advice on the formal
parts of my work, for his indispensable contributions to the core ideas of SCOLL,
for his experiments with alternative implementations of SCOLLAR, for the versatile
parser he built that allowed me to experiment with the syntax of SCOLL, and for his
co-authorship in several papers and technical reports, but above all for always being
the first to understand my concerns and aspirations about SCOLL.

I also want to mention the direct and indirect support I had from Boris Mejı́as and
Raphaël Collet, my colleagues at UCL, co-founders of the band we appropriately called
“confused deputies” in honor of an important challenge for safe collaboration that is
modelled and discussed in this work.

iii

iv

I thank the Mozart/Oz hacker and developer communities for their support. I thank
the members of the cap-talk mailing list for the many interesting discussions on the
list. I also thank the members of the E-language community for keeping the capability
based language E alive and well, and for the discussions on the e-lang mailing list.

I thank Dr. Barry O’Sullivan and professor Gene Freuder of Cork Constraint Com-
putation Centre and my coworkers at that research lab for giving me the opportunity to
work with them and to continue my research in a very stimulating environment. I am
grateful to the Science Foundation Ireland for funding the work I did there.

I also want to mention here the company “objective development”, who offered me
the free use of their product “Little Snitch” [lit] for the purpose of my research. Their
product is discussed as an example of ACL based reference monitoring in Section 8.1.5.

Last but not least, I want to thank two people that were not directly involved in my
PhD research, but had a definitive influence on my education and carrier as a software
engineer: professor Theo D’Hondt of VUB (Free University of Brussels) and my good
friend Michel Tilman of IMEC Leuven, who remain my most important mentors in
software engineering, both in theory and practice.

Fred Spiessens
February 21, 2007

Contents

Abstract i

Acknowledgments iii

Table of Content v

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Safety Analysis for Software Engineers 1

1.1.1 Motivation . 3
1.2 Structure of the Thesis . 3
1.3 Concepts and Definitions . 6

1.3.1 Protection Systems . 6
1.3.2 Access Control Lists versus Capabilities 6
1.3.3 Permission versus Authority 8
1.3.4 The Principle of Least Authority (POLA) 9
1.3.5 Safety Enforcement with Protection Systems 9
1.3.6 Behavior based Safety Analysis 12
1.3.7 Safe Approximation of Behavior 12
1.3.8 Designing for Safety, Relying on Collaboration 12

1.4 Thesis statement . 13
1.5 Contributions . 13

1.5.1 Major Contributions . 14
1.5.2 Minor Contributions and Side Contributions 14

2 Overview of the Contributions 15
2.1 A New Formal Model for Safety Analysis 15

2.1.1 An Extended View on Protection States 16
2.1.2 Refining the Protection State 17
2.1.3 A Fixed Set of Subjects for a Finite Protection State 18
2.1.4 Modeling Protection State Transitions 18
2.1.5 Knowledge Behavior Models 19
2.1.6 Safety Analysis with KBMs 20

2.2 Safe Collaboration Language: SCOLL 21
2.2.1 Example: The Caretaker . 21
2.2.2 Code Example for the Caretaker Pattern 22

v

vi Contents

2.2.3 SCOLL code for the Caretaker Pattern 23
2.2.4 The Interaction model . 23
2.2.5 The declare Part. 25
2.2.6 The system Part . 26
2.2.7 The behavior Part . 27
2.2.8 The subject Part . 29
2.2.9 The config Part . 29
2.2.10 The goal Part . 30
2.2.11 Applications . 30

2.3 SCOLLAR . 30
2.3.1 Purpose . 31
2.3.2 Example . 31

I Foundations 35

3 Formal Systems for Safety Analysis 37
3.1 Formal Protection Systems . 37

3.1.1 Introduction . 38
3.1.2 Definitions . 38
3.1.3 The Safety Problem . 41
3.1.4 Is Safety Computable? . 43
3.1.5 Relying on Subjects in HRU Systems 43
3.1.6 Discussion . 44

3.2 Take-Grant systems . 44
3.2.1 Protection Graphs . 45
3.2.2 De-Jure Rules . 46
3.2.3 De-Facto Rules . 47
3.2.4 Safety Analysis . 48
3.2.5 Safe Approximations of Information Propagation 49

3.3 Discussion and Comparison . 49
3.3.1 Local Preconditions govern the Propagation of Authority . . . 49
3.3.2 Modeling Authority, not just Permissions 50
3.3.3 Modeling Static Behavior 51
3.3.4 Modeling Dynamic Behavior and Collaboration 51
3.3.5 Modeling n-ary relations . 51

3.4 Modeling the Permission - Authority Relation 52
3.4.1 The Relation Permission ↔ Access 52
3.4.2 The Relation Permission → Authority 53
3.4.3 The Relation Access → Authority 53
3.4.4 The Relation Permission → Delegation 53

4 Capabilities 55
4.1 The Original Concept of Capabilities 55

4.1.1 The Supervisor . 56
4.1.2 Principals and their Processes 57
4.1.3 C-lists and Spheres of Protection 57
4.1.4 Segment Capabilities . 57
4.1.5 Inferior Sphere Capabilities 58
4.1.6 Entry Capabilities . 58

Contents vii

4.1.7 Receive Capabilities . 59
4.1.8 Directory Capabilities . 60
4.1.9 Ownership of Capabilities 61
4.1.10 Propagation of Capabilities 61

4.2 Interpretation and Discussion . 62
4.2.1 Fixing ambient authority . 63

4.3 Object Capabilities . 63
4.3.1 One Type of Capabilities . 63
4.3.2 Capabilities Available by Initial Conditions 64
4.3.3 Acquiring Capabilities by Parenthood and Endowment 64
4.3.4 Acquiring Capabilities by Interaction 65
4.3.5 The Authority attainable by using Capabilities 65

4.4 DVH as Object Capabilities . 66
4.5 Restricting the use and the propagation of capabilities 67
4.6 Capabilities compared to Access Control Lists 67

II Main Contributions 71

5 Knowledge Behavior Models 73
5.1 Motivation . 74

5.1.1 A Preliminary Example . 74
5.2 Approach . 77

5.2.1 Safe and Tractable Approximations 78
5.2.2 Refining Insufficiently Accurate Approximations 79

5.3 The Basic Elements of KBMs . 80
5.3.1 Subjects . 81
5.3.2 Predicates and Facts . 83
5.3.3 System Rules . 86
5.3.4 Behavior Rules . 87

5.4 A Simple Model for Object-Capabilities with Creation 89
5.4.1 Running Example . 89
5.4.2 Predicates for Subject Creation 92
5.4.3 System Rules for Subject creation 94
5.4.4 Behavior Rules for Creation 95
5.4.5 The KBM of the running example 95
5.4.6 The Initial Configuration . 95
5.4.7 Modeling a Proof-of-Access Tester 97

5.5 Refining may.return/2 . 99
5.5.1 Refined Predicates . 99
5.5.2 Refined Rules . 101
5.5.3 Overloading Knowledge Predicates 102
5.5.4 A Proof-of-Access Tester with Exchange Behavior 103
5.5.5 Proxying to an Access Tester 103

5.6 More Expressive Power . 104
5.6.1 Restrictions . 105
5.6.2 A Generic Approach to Refinement 106
5.6.3 Adding data . 109
5.6.4 Multiple Arguments . 110
5.6.5 Non Monotonic Changes . 110

viii Contents

5.6.6 Behavior and Knowledge Inheritance 111
5.7 Formal Definitions and Proofs . 111

5.7.1 Knowledge Behavior Models 112
5.7.2 Proving and Disproving Sentences 114
5.7.3 Formal Notion of Safe Approximation 115
5.7.4 Formal Notion of Aggregation 116
5.7.5 Expressing Safety Problems with KBMs 118

6 The Language SCOLL 121
6.1 Objectives . 121
6.2 Structure of a Kernel SCOLL Program 122

6.2.1 Declarations . 124
6.2.2 System . 125
6.2.3 Behavior . 126
6.2.4 Subject . 127
6.2.5 Configuration . 128
6.2.6 Goal . 129

6.3 Kernel SCOLL Syntax . 129
6.4 KBM Semantics . 131
6.5 The Complete SCOLL Language . 133

6.5.1 Multi-Headed Rules . 133
6.5.2 Using Wildcards . 134
6.5.3 Explicit Refinement Rules 134
6.5.4 Safe Defaults . 137

6.6 SCOLL Syntax . 138
6.7 Possible Extensions . 138

6.7.1 Expressing Refinement Partial Orders 138
6.7.2 Support for Parenthood and Endowment 140
6.7.3 Support for Creation and Aggregation 141
6.7.4 Goal Refinements . 141
6.7.5 Syntactic Sugar for Predicate Declarations 141
6.7.6 Disjunctions in Rule Bodies 142
6.7.7 Expressing Behavior Restrictions with Negated Predicates . . 142
6.7.8 Expressing Behavior Conditional on Negated Predicates . . . 142

6.8 Modeling in SCOLL . 143
6.8.1 Modeling Authority Propagation 144
6.8.2 Authority Propagation in the Presence of Global State 145
6.8.3 Authority Propagation in the Presence of Ambient Authority . 146
6.8.4 Authority Propagation via Channels 146
6.8.5 Authority Propagation and the Principle of Attenuation 146
6.8.6 Authority Propagation and the Granovetter Property 147
6.8.7 Authority Propagation and Collaboration 147
6.8.8 Modeling Authority Propagation in Capability Systems 148
6.8.9 Modeling Behavior . 148

6.9 Example : Inescapable Interposition 149
6.9.1 Overview . 149
6.9.2 Aggregating by Clan and by Target 151

6.10 Evaluation . 151

Contents ix

7 Pattern Analysis with SCOLLAR 157
7.1 Overview . 157

7.1.1 Most Important features . 158
7.1.2 Restrictions Suggested By SCOLLAR 159

7.2 Different Ways to use SCOLLAR for Safety Analysis 160
7.2.1 Fixpoint Computation Mode 160
7.2.2 Solution Mode . 162

7.3 Describing SCOLL Patterns . 164
7.3.1 Predicates and Facts . 166
7.3.2 Knowledge and behavior . 166
7.3.3 Rules . 168

7.4 The Distinct Parts of a SCOLL Pattern 168
7.4.1 The system pane . 168
7.4.2 The behavior pane . 170
7.4.3 The subject pane . 172
7.4.4 The config pane . 173
7.4.5 The goal pane . 174

7.5 SCOLLAR’s Web Based User Interface 174
7.5.1 SCOLLAR Calculations . 174
7.5.2 Saved Patterns . 176
7.5.3 Saved Systems . 177

7.6 Overall CCP-based design . 178
7.6.1 Propagation . 180
7.6.2 Declarative Laziness . 180
7.6.3 Closed World Propagators 181
7.6.4 Distribution . 182
7.6.5 Search . 182

7.7 Implementation . 183
7.7.1 Using Finite Domain Integers 183
7.7.2 Alternative Approach using Finite Sets 184

8 Patterns of Interaction and Collaboration 187
8.1 Deputies that cannot be Confused 187

8.1.1 Description of the problem 187
8.1.2 Proposed Solutions . 189
8.1.3 Capability Based Deputies in SCOLLAR 191
8.1.4 Analysis of the SCOLLAR results 192
8.1.5 “Little Snitch” : A User Experience with Reference Monitors 202

8.2 Revokable authority . 206
8.2.1 The Caretaker Pattern . 206
8.2.2 Maximizing carol’s behavior. 209
8.2.3 Maximizing both alice’s and carol’s behavior 210

8.3 Confinement . 213
8.3.1 Inescapable Interposition: The Membrane Pattern 213

8.4 Delegation Considered Harmful for Confinement? 214
8.4.1 The ∗-Property . 216
8.4.2 Boebert’s Proof . 216
8.4.3 A Closer Look at Delegation in Capability Systems 217

8.5 Reference Monitoring . 220
8.5.1 Java’s Sandbox . 220

x Contents

8.5.2 Allowing Applets to Call Home 230
8.5.3 Java’s Sandbox and Authority Control 233
8.5.4 Stack Walking . 235
8.5.5 Limitations of Stack walking Strategies 239

III Related and Future Work 243

9 Adding Authority Flow Constraints 245
9.1 Authority Flowing in Graphs . 245
9.2 Flow Graph Constraints . 246

9.2.1 Definitions . 246
9.3 The DomReachability Constraint . 251
9.4 Constraints on the Reachability of Authority 251

9.4.1 The Bounded Transitive Closure Problem (BTC) 251
9.4.2 Safety and Liveness in terms of BTC 251
9.4.3 Confinement by Interposition 252
9.4.4 Confinement by Restricted Behavior 254
9.4.5 Implication graphs: The Conditional BTC Problem 256

9.5 Future Work . 257
9.5.1 Implication hypergraphs: The Cardinal BTC Problem 257
9.5.2 Towards a Synergy of SCOLLAR and DomReachability . . . 257

10 Designing a Capability Secure Language 259
10.1 Introduction . 259

10.1.1 Motivation . 259
10.1.2 Revisited Concepts . 259
10.1.3 Approach . 261

10.2 Basic Principles . 261
10.2.1 Mandatory Principles . 262
10.2.2 Pragmatic Principles . 264
10.2.3 Additional Principles: Support for the Review Process 267

10.3 The Layered Structure of Oz-E . 267
10.3.1 Kernel Language . 268
10.3.2 Full Language . 270
10.3.3 Environment Interaction . 270

10.4 Cross-Layer Concerns . 271
10.4.1 Pragmatic Issues in Language Design 271
10.4.2 Distributed Systems . 271
10.4.3 Reflection and Introspection 273

10.5 Some Practical Scenarios . 274
10.5.1 Implement Guards at what Level? 274
10.5.2 A Mechanism for Invitation and Safe Introspection 275

10.6 Conclusions and Future Work . 278

11 Research Context and Agenda 279
11.1 Related and Useful Formalisms . 280

11.1.1 The (Extended) Schematic Protection Model 280
11.1.2 The Web-calculus . 281
11.1.3 The Refinement Calculus . 281

Contents xi

11.1.4 The Situation Calculus . 282
11.2 Approaches and Technologies to Optimize SCOLLAR 284
11.3 Improved Expressive Power . 285

11.3.1 More Expressive Behavior 285
11.3.2 More Expressive Goals . 285

11.4 Opportunities for Integration . 286
11.4.1 SCOLL Carrying Code . 286

11.5 Other Opportunities and Applications 287
11.5.1 User Interface . 287
11.5.2 Type Safety Analysis . 287

12 Conclusions 289

Publications 291

References 291

List of Figures

1.1 Indirect Authority: bob can manipulate the screen indirectly. 8
1.2 Indirect Authority: screen proxy is relied upon to reduce alice’s

authority to manipulate the screen. 9
1.3 A service entity (carol) than cannot be abused. 10

2.1 The caretaker pattern, before and after revocation. 21
2.2 Simple caretaker in Oz-E. 23
2.3 Simple caretaker in SCOLL. 24
2.4 The simple caretaker example in SCOLLAR 32
2.5 Overview of the solutions in SCOLLAR 33

3.1 de-jure rules . 46
3.2 de-facto rules . 47
3.3 The behavior of bob decides if alice has read-authority to carol. 50
3.4 Ternary relations are necessary for alice to differentiate her behavior. 52

5.1 Preliminary Example . 76
5.2 bob, carol and the relied-upon subject alice in Oz 90
5.3 bob, carol and the relied-upon subject alice in Emily 90
5.4 The initial access graph . 91
5.5 carol as a relied-upon proof-of-access tester in Oz and Emily. . . . 98
5.6 Examples of data lattices . 110
5.7 Safe approximation via operational semantics 116

6.1 An example of a complete SCOLL program 123
6.2 Example declare part . 124
6.3 Example system part . 125
6.4 Example behavior part . 126
6.5 Example subject part . 127
6.6 Example config part . 128
6.7 Example goal part . 129
6.8 Kernel SCOLL Syntax . 130
6.9 Extract from a SCOLL program with refinement rules 135
6.10 The equivalent extract without refinement rules 136
6.11 Default behavior in SCOLL . 137
6.12 The equivalent kernel SCOLL . 138
6.13 SCOLL Syntax . 139
6.14 Translation between SCOLL and actual code 144
6.15 The initial configuration for the example 150

xiii

xiv LIST OF FIGURES

6.16 Oz-E code for the proxy’s behavior 152
6.17 The configuration after a single invocation: grayed areas indicate which

entities will be aggregated. 153
6.18 The SCOLL program expressing the safety problem 154

7.1 The results of calculating a safety problem in SCOLLAR 161
7.2 The results of calculating a maximization problem in SCOLLAR . . . 163
7.3 SCOLLAR’s online user interface: the SCOLL input page 165
7.4 Constraint Store and Propagators . 178
7.5 The Oz finite domain integer implementation of a constraint propagator

that guarantees that only maximal solutions are found 183

8.1 The initial access graph for the confused deputy analysis. 191
8.2 The resulting access graph . 195
8.3 The combined access graph of all the solutions. 201
8.4 The combined access graph of all the solutions. 205
8.5 The Caretaker Pattern - Initial Configuration 207
8.6 The combined access graph . 209
8.7 The graph for the first three solutions found 211
8.8 The membrane pattern in SCOLL. 215
8.9 The unique solution to the membrane pattern: no restrictions are nec-

essary. The pattern is safe for use with unknown subjects alice and
bob. 216

8.10 The SCOLL pattern expressing the “implied authority” interpretation
of capability delegation. 218

8.11 The resulting access graph . 228
8.12 The SCOLL pattern expressing Java’s sandbox, excluding the “call

home” policy. 229
8.13 The result of the fixpoint calculation for the Java sandbox. 231
8.14 The SCOLL pattern expressing Java’s sandbox, including the “call

home” policy. 232
8.15 The call permission graph . 233
8.16 The result of the fixpoint calculation for the “call home” sandbox policy. 234
8.17 A SCOLL pattern for non-confused deputies, using a strategy based on

stack walking. 238

9.1 Flow graph . 250
9.2 Extended flow graph . 250
9.3 Extended dominator tree . 250
9.4 The ∗-property black box . 252
9.5 A solution with the minimal number of controlled subjects 253
9.6 Data Forwarder (dataflow diode) . 254

10.1 Authority amplification can confuse deputies 264
10.2 Paths of vulnerability . 265
10.3 A three valued logic type guard . 274
10.4 Guarding output parameters . 275
10.5 Stateful auditor that investigates declarativity 276
10.6 Stateless auditor that investigates declarativity 277

LIST OF FIGURES xv

11.1 Components in the transformation between source code and SCOLL . 286

List of Tables

3.1 Primitive operations on HRU configurations 39
3.2 Rights in Take-Grant Systems. 45

5.1 Overview of the predicates introduced in section 5.3 89
5.2 The pseudo permission predicate child/2 93
5.3 Behavior Predicates for Parenthood and Endowment 93
5.4 Knowledge Predicates . 94
5.5 The KBM of the running example 96
5.6 The initial configuration of the running example (Section 5.4.1). . . . 97
5.7 Predicates for refining responder behavior. 100
5.8 Refinement relations . 100
5.9 Refined behavior using a refinement semi-lattice 108
5.10 Refinement relations in the semi-lattice of facts 108

6.1 Identifiers in SCOLL . 123

8.1 Client-controlled versus deputy-controlled authority 188
8.2 Deputy Pattern in Scoll . 193
8.3 Deputy Pattern Alternative Parts . 194
8.4 The deputy’s behavior restrictions. 195
8.5 The deputy’s knowledge and behavior (1) 196
8.6 The deputy’s behavior restrictions when using refined behavior. (Alt. 1) 198
8.7 The deputy’s behavior restrictions when relying upon dFile. (Alt. A) 199
8.8 The deputy’s behavior restrictions with refined behavior and restricted

dFile (Alt. 1A) . 200
8.9 The 12 solutions restricting the behavior of deputy and dFile. (Alt.

B) . 202
8.10 Solutions 1 to 13. (Alt. 1B) . 203
8.11 Solutions 14 to 25. (Alt. 1B) . 204
8.12 The caretaker pattern in SCOLL . 208
8.13 The three solutions: possibilities for carol’s behavior restrictions . . 210
8.14 The first three solutions for alice’s and carol’s behavior restrictions 212
8.15 The knowledge facts from the fixpoint calculation 219
8.16 Boebert’s pattern, using a sufficiently refined model of DVH capabilities 221
8.17 The maximal fixpoint results for highAgent. 222
8.18 The maximal fixpoint results for lowAgent. 223
8.19 The maximal fixpoint results for rCap1. 224
8.20 The maximal fixpoint results for rCap2. 225
8.21 The maximal fixpoint results for wCap. 226

xvii

xviii LIST OF TABLES

8.22 The maximal fixpoint results for lowFile. 227
8.23 The results for the stack walking example 240

9.1 Subgraphs for behavior-based internal dataflow 255

Chapter 1

Introduction

1.1 Safety Analysis for Software Engineers
The subject of this thesis is safety analysis in systems of interacting entities, applied to
software development and engineering. Together with privacy and integrity, safety is an
important aspect of software security. Safety is about what events should never occur,
what actions should never be possible, and what situations should never be reached.
Because we assume that situations are concepts that can be rich enough to include
accurate descriptions of the events that occurred in the past and of the actions that are
possible in the present, we restrict our attention to situations.

The situations that can be reached via the active or passive, direct or indirect in-
volvement of a software entity (component, procedure, object), will be called that en-
tity’s authority. In practice, a protection system (Section 1.3.1) will impose certain
restrictions on the authority of the entities and on the ways in which authority can pro-
pagate among the entities, by requiring the availability of certain rights or permissions.
A more precise definition of authority and permissions will follow (Section 1.3.3).

This work proposes a new formal model (Chapter 5), a declarative language (Chap-
ter 6) and a safety analysis tool (Chapter 7), that allow designers and developers of
secure software to express and analyze the safety problems that are of concern to them.

The goal is to provide the following abilities to the software engineer:

1. Choose, refine, or construct a model for authority in her software, and for the way
authority can propagate, in accordance with the protection system that controls
the software at runtime.

2. Safely approximate the possible runtime effects of the software that is being
designed (or the existing software that is to be analyzed) in that model: making
sure that all effects that are attainable in the software correspond to reachable
authority in the model.

3. Express her concerns about the safety of the software in the model: what autho-
rity should not be reachable.

4. Express her concerns about the authority that is necessary for the functionality
of the software, and that should not be prevented by the way the enforcement of
the safety requirements is (or will be) implemented.

1

2 Chapter 1. Introduction

5. Use the proposed analysis tool for one or more of the following purposes :

• To prove that the safety requirements are satisfied in the model (and thus in
software), and that the authority that is necessary for the functionality can
be implemented without violating the safety requirements.

• To discover additional requirements for the software, that, when relied
upon, will suffice to make the safety requirements provable in the model,
without preventing the implementation of the necessary functionality.

• To find clues about how and where the model of the software should be
refined to improve the resolving power of the analysis.

• To detect and locate the need for a (partial) redesign of the software, in-
volving the tactical inter-positioning of extra relied-upon software entities,
and/or the redistribution of permissions.

New about this approach is:

1. The entities’ restrictive influence on the reachable authority can play a role of
equal importance to the restrictive influence the protection system exerts via its
control of permissions.

2. The dynamic character of an entity’s involvement (in making authority reach-
able) is recognized, and can be safely approximated in the model to an appro-
priate level of precision. Because of its dynamic nature, we will call an entity’s
involvement its behavior (Section 1.3.7).

3. The explicit and separate modeling of entity behavior and protection system re-
strictions, each at an appropriate level of precision.

4. The possibility to start with a very simple model of the software, and incre-
mentally refine the model in the parts that need to be modeled in greater detail,
enhancing the expressive power of the model precisely where and when it is
needed.

The main goal of this work is to provide assistance for the design of safe software,
by encouraging software engineers and programmers to analyze, understand, and use
abstract patterns for safe interaction between the relied-upon parts of the software and
the untrusted or unknown parts the programmer must rely on for the functionality they
provide without making his software vulnerable to their potential lack of safety.

Nevertheless, the approach presented here can also be used to analyze the safety
in existing software. Some examples will illustrate the process of modeling exist-
ing source code, to provide a better intuition about the meaning and the role of the
constituents in the model, but the scope of this thesis does not include the design or
implementation of tools for:

• Semi-automatic modeling of existing software from the source code, for the pur-
pose of automated safety analysis.

• Code generation starting from a safe model.

Both topics represent useful and non-trivial opportunities for an interesting continua-
tion of the research work presented in this thesis.

1.2. Structure of the Thesis 3

As a concrete example of a safety concern, consider a software engineer who wants
to integrate untrusted components into her software, while preventing these compo-
nents from rendering dialog boxes on the screen that look too much like a system
dialog, because that may persuade the user to reveal his system password. She decides
to provide to the untrusted software only a limited set of purpose-designed screen ren-
dering routines, that are relied upon to render everything with a recognizable border
decoration and color suite.1

Using a safe model for her runtime environment, she could then express approx-
imations for all interacting components, and perform a safety analysis in the model,
to either confirm the safety of the design (no native system routines can be abused by
the components), or suggest additional restrictions for the integration of the untrusted
software. We present in this thesis a method and a declarative language to make this
modeling task feasible and practical, together with a prototype implementation of a
safety analysis tool.

1.1.1 Motivation
Current operating systems and runtime environments can prevent that a user’s data
become accessible to another user, but most of them cannot precisely restrict a com-
ponent’s authority on a need-to-use basis. The sand-boxing approach in Java (to give
untrusted code only limited access to system routines) is but a very rough and static
way to impose such restrictions. Software engineers need more refined and dynamic
ways to restrict the worst-case influence a software component can have.

Secure software is designed following the principle of least permissions: “Never
give a software component more permissions than necessary to do its job”. However,
because the authority of a component is not only influenced by its own permissions but
also by the permissions and the behavior of other components, this design principle
should be restated as the principle of least authority (Section 1.3.4): “Distribute per-
missions among all components and restrict the (programmed) behavior of the relied-
upon components, so that no unnecessary authority becomes reachable.”.

Formal safety analysis can be applied in software design to help meet these prin-
ciples. As a result, the part of a user’s software that his safety requirements rely upon
(are vulnerable to) could shrink dramatically. In fact, the user should only need to rely
on a small security kernel of his operating system.

For instance, a user should not have to rely on his solitaire game to not delete all
his files, access his address book, or use his mail system. Sadly, that is still the case
for most computer users, because the programs they start, run unconditionally with the
user’s complete authority, dangerously ignoring the aforementioned principles.

In this short introduction we could not avoid using terminology that was not yet
properly introduced. We will clarify these terms in section 1.3, before arriving at the
thesis statement.

1.2 Structure of the Thesis
The rest of this chapter consists of an explanation of the concepts that are necessary
for a correct interpretation of the thesis statement (Section 1.3), followed by the thesis
statement (Section 1.4), and a list of contributions (Section 1.5).

1This example is inspired by Stiegler and Miller’s: “A Capability Based Client: The DarpaBrowser”
[SM02].

4 Chapter 1. Introduction

Chapter 2 provides an intuitive overview of the contributions that are made in this
thesis. It is recommended to all readers, regardless of the level of detail at which
they want to understand the contents and the relevance of the contributions. The most
important concepts used in the following chapters will be introduced. The reader will
get a general idea about the context in which the contributions can be appreciated and
applied.

Part I contains two chapters that describe and discuss the foundations on which this
work is built.

Chapter 3 reviews two existing and well known formal protection models, that form
the basis of the new formalism called “Knowledge Behavior Models”. The chap-
ter ends with an overview of the aspects of the relation between permissions and
authority, that are important when modeling the propagation of authority in pro-
tection systems.

Chapter 4 gives an overview of the main concepts and principles of capability sys-
tems, and explains how safety properties are enforced by protection systems that
depend on holder-managed capability propagation.

Part II contains three chapters that describe the main contributions in depth, and a
fourth chapter that presents a collection of actual patterns of collaboration.

Chapter 5 presents Knowledge Behavior Models (KBMs): a new and practical for-
mal approach to calculate safety properties, using safely approximating models
and providing the expressive power that is appropriate for engineers of secure
software.

Chapter 6 describes the declarative language SCOLL: Safe Collaboration Language.
SCOLL is a language to express patterns of interacting entities and the problems
we want to solve considering such patterns. It is based on a kernel language, with
a logical semantics expressed in terms of Knowledge Behavior Models (Chapter
5).

Chapter 7 describes SCOLLAR: a tool for safety analysis, based on constraint pro-
gramming, that implements the SCOLL language.

Chapter 8 presents a set of patterns of interaction and collaboration, expressed in
SCOLL and analyzed in SCOLLAR. It demonstrates the practical applicability
of the approach presented in this thesis, not only to analyze patterns in capability
systems but also to express, investigate, and compare alternative approaches for
building secure software.

Part III contains related contributions in collaboration with other researchers, related
work by other researchers, opportunities for future research and conclusions,

Chapter 9 proposes a way to directly express elaborate safety policies as constraints
on authority flow graphs, derived from an access graph. This chapter is the
result of joint work with the inventor of the DomReachability [QVDC06] con-
straint propagator: Luis Quesada.

1.2. Structure of the Thesis 5

Chapter 10 explains the most important design principles for capability secure multi-
paradigm programming languages, to enable and facilitate the practice of se-
cure programming.

Chapter 11 situates this work in the broader research context of related work. It also
provides a research agenda for future work, listing the opportunities we think
are the most important and appealing to apply and extend our work in a broader
context.

Chapter 12 presents the conclusions to this work.

6 Chapter 1. Introduction

1.3 Concepts and Definitions
In this section we introduce the concepts necessary for a correct interpretation of the
thesis statement.

1.3.1 Protection Systems
We assume that a rule based mechanism is present, that checks and manages permis-
sions during the execution of a program. Such a mechanism is called a protection
system [Bis04]. Permissions indicate what entities can use other entities in what way,
during the execution of a program.

The state of a protection system, the set of permissions that are valid at a certain
stage in the execution of a program, is called the protection state. The protection state
can change, for instance when entities can grant (delegate, copy) their permissions to
other entities. Protection systems allow increasingly more, when increasingly more
permissions are given.

Monotonic protection systems [HR78] are protection systems in which the protec-
tion state can only grow : permissions are never removed. This means that permissions
cannot be revoked.

In the literature, and in most of the examples in this thesis, permissions are binary
predicates. That means that the protection state can be modeled as a two-dimensional
matrix in which the rows indicate the subjects (entities that can have permissions),
the columns indicate the objects (entities to whom the permissions apply), and the
cells contain rights, indicating the ways in which the subject can use the object. For
instance, the predicate write(alice,bob) would indicate that the entity alice
has permission to write to entity bob, and would be presented in the protection
matrix by a write-right in the cell at row alice and column bob.

In this thesis we generalize the concept of permissions, to predicates of arbitrary
(finite) arity. The reason is not because the generalization would be necessary to mo-
del many actual protection systems, but because the restriction to binary permissions
is useless as such, and would prevent us from modeling and experimenting with al-
ternative models. For instance, a unary predicate read(alice) could be used to
concisely and safely approximate a binary predicate read(alice,), in which the
underbar stands for all possible objects.

We will also generalize the concept of protection state, to include everything we
consider relevant for safety, not only the permissions. Our generalized protection state
may for instance contain aspects of the history of the events and the actions that have
occurred, if these aspects are relevant for safety. s

1.3.2 Access Control Lists versus Capabilities
Reference monitors form a crucial part in the implementation of many permission based
protection systems. To control the direct use of a resource at runtime, a reference
monitor will first identify the entity that tries to use a resource as the “subject”, then it
will find out if that subject has the relevant permission, and consequently it will enable
or prevent the use of the resource by the subject.

Typically, the permissions checked by a reference monitor will be organized as
“access control lists” (ACLs): lists that correspond to a single resource and enumerate
the subjects together with their permissions on that resource. For instance, an ACL for
a particular file will state which users have read or write permission to that file. The

1.3. Concepts and Definitions 7

ACL approach is often used at operating system level, where the subject is identified
as the human user (principal, group, role) on whose behalf a program or a process is
running.

Software engineers need to guarantee the safety in a more refined and dynamic en-
vironment, where the subjects no longer correspond to users, but to software entities at
the finest level (objects, procedures) that use each other in a certain way, and where all
these entities need permission(s) in order to do so. New entities and their permissions
are constantly created at runtime. In such conditions, a static ACL based approach is
often not practical: the identification of the subjects becomes problematic, and the set
of subjects is too dynamic for the approach.

For such refined and dynamic environments, a capability based approach is more
appropriate. A capability is an unforgeable reference to a runtime entity, that encap-
sulates a permission to use the designated entity in a certain way. Capability systems
will be discussed in depth in chapter 4.

If all references to entities are made unforgeable, and all permissions are encap-
sulated as capabilities, the reference monitor only has to make sure that the rules for
acquiring capabilities are respected. Since all the necessary permissions that have to be
checked will be encapsulated with the designations that are involved in the acquisition
(see chapter 4), and since the designations are necessary in the process of acquisition
anyway, the capability approach requires only the overhead to make the references
unforgeable, and is completely scalable.

In memory-safe language runtimes (e.g. the Java Virtual Machine), all references
are already unforgeable. Therefore, models based on capabilities are a software en-
gineer’s natural choice, when analyzing safety in programs written in a language that
guarantees such unforgeable references at runtime. Object capabilities (Section 4.3)
are particularly interesting in this respect, since they have only one type of permission:
all the capabilities encapsulate the permission to invoke the entity that is designated by
the capability.

Besides scalability and ease of implementation, the most important properties of
capabilities are:

Discriminative, purposeful use of permissions : With capabilities, entities can use
some of their permissions explicitly for a certain task, and others permissions
for other tasks. The importance of purposeful use of permissions will be illus-
trated in section 1.3.5.

Reified permissions : Capabilities encapsulate permissions as unforgeable values. En-
tities propagate permissions in the same way as other values, e.g. as input and
output arguments in invocations.

Combination of Permission with Designation : Capabilities are not just permissions
as unforgeable values: they also function as unforgeable designations to the ob-
ject (target) of the permission. That will dramatically simplify the task of an
entity to use the right permission for the right task: the “right” permission not
necessarily being the permission that allows the task, but the permission that is
expected to allow the task. Section 1.3.5 will illustrate this advantage.

Remark In the literature, the difference between ACLs and capabilities is sometimes
reduced to different ways of organizing the rights in an access matrix: by object for
ACLs, and by subject for capabilities. In “Capability Myths Demolished” [MYS03],
Miller, Yee and Shapiro show that this distinction is barely relevant and certainly not

8 Chapter 1. Introduction

crucial. It is an over-simplification that can lead to false conjectures about the relative
advantages and disadvantages of both approaches.

1.3.3 Permission versus Authority
Permission A permission allows an entity to take an action, like manipulate-the-

screen, or get-user-input, or use another protected resource in a direct way.

Notice that in capability based protection systems, because every permission is
combined with a designation, the holder of the capability is not only allowed to
perform the action, but is also able to do so. That is not necessarily the case for
general protection systems, where write(alice,bob) only means: alice
is allowed to write information to bob, but she may still have to locate bob
first.

Authority In [MS03], Miller and Shapiro describe authority as the general effect an
entity can have in the system. The effect of a permitted action is a simple and
direct form of authority, for instance: the effect of the action “manipulate the
screen”, when permitted, is: changing the information that is visible on the
screen.

But there are other, indirect and potentially complicated forms of authority, that
do not correspond to a single action controlled by a permission. For instance, in
figure 1.1, entity alice can and will read instructions from bob, and inter-
pret the instructions to manipulate the screen accordingly. The resulting
authority is the same as if bob would have had a permission to manipulate
the screen.

alice bob

permission
to read

screen

permission
to manipulate

 authority
 to manipulate

Figure 1.1: Indirect Authority: bob can manipulate the screen indirectly.

The relation between permissions and authority is causal: ultimately all authority
is brought about by the use of permissions. But that relation has many aspects that are
important when modeling protection systems. Section 3.4 discusses these aspects in
detail.

Notation in Authority Graphs

In illustrations like figure 1.1 we will indicate the names of relied upon subjects in
black and the names of untrusted (or unknown) subjects in red. Solid black arrows

1.3. Concepts and Definitions 9

indicate permissions, while dashed red arrows indicate (indirect) authority, and grey
arrows will indicate invocations (e.g. figure 3.4).

1.3.4 The Principle of Least Authority (POLA)

The principle of least authority states that every entity should have no more authority
than is necessary for the functionality that it is supposed to provide. It is an extreme
interpretation of Saltzer and Schroeders “Principle of Least Privilege” [SS73], that is
often interpreted in a weaker form as the “Principle of Least Permissions”. In view of
the many and complex ways in which authority can be brought about, POLA is to be
used as a guideline when developing secure software, rather that as a strict rule.

For instance, if a software component alice needs to manipulate a particular area
of the screen, it may be in accordance with the principle of least permissions to give
alice a permission to manipulate the screen, but it would not be strictly in accordance
with the principle of least authority. In an (object) capability system, we can do better,
and give alice a capability that designates a relied-upon programmed entity screen
proxy, who can be relied upon to relay the manipulation instructions to the screen,
only after cropping them to the restricted area. Figure 1.2 illustrates the situation.

alice screen
proxy

permission
to invoke

screen
driver

reduced
authority to

manipulate

 permission
to invoke

Figure 1.2: Indirect Authority: screen proxy is relied upon to reduce alice’s
authority to manipulate the screen.

Capability based safety enforcement will rely very strongly on programmed enti-
ties, to accurately reduce the authority that they make available to the other entities
they interact with.

As a direct consequence of POLA, all authority that is available to an entity “am-
biently” (without requiring an explicit transfer of authority by another entity), is to
be avoided. Ambient authority is prevented in language runtimes like the E virtual
machine [MSC+01], where the loader makes sure that all software is loaded with no
access to any other runtime entity that can provide authority.

1.3.5 Safety Enforcement with Protection Systems

To be effective, safety enforcement should prevent all illegal authority, regardless of the
ways in which such authority can be brought about (what permissions are involved).
Three mechanisms are involved, when restricting authority:

10 Chapter 1. Introduction

1. Enforcing the permissions: make sure that no illegal actions can be performed.
This is a task for a reference monitor at runtime, and as we have seen already
(Section 1.3.2), that task is simple for capability based protection mechanisms.

2. Restricting the propagation of permissions: make sure that permissions can only
propagate in legal ways. This task is performed at runtime by the reference
monitor too. “Propagate a permission” can be a permission itself. Often, the
reference monitor will have to check more than one permission. For instance, the
reference monitor may have to enforce a rule that says: an entity can only grant
the permissions it has itself. This is the well known principle of attenuation.

Object capabilities have again a simple and valid solution to this problem, based
on the fact that “invoke” is the only permission and on the inextricable combi-
nation of permission and designation into a capability. A memory safe language
runtime will suffice to do the job (Section 4.3)

3. Allow discriminative, intentional application of permissions. The protection sys-
tem must allow the entities to choose the permission(s) they want to use to per-
form a certain task. Otherwise, the entities cannot protect themselves and their
clients from their other clients’ bad intentions or programming errors.

For instance, suppose that alice and bob make use of a computation service
carol as illustrated in figure 1.3. The results will be written by carol to
the file that is designated by her client. In the process, carol will also con-
sult and update her own file. When writing output for alice’s calculations,
there must be a way for carol to indicate to the protection system that only
alice’s permissions should be used. Otherwise, alice could choose bob’s
file or carol’s file as output, and disturb carol’s and bob’s correct workings.

alice

carol

 invoke

carol's
file

w

alice's
file

 r/w

bob

invoke

bob's
file

 r/w w

w r/ww

Figure 1.3: A service entity (carol) than cannot be abused.

The solid arrows indicate permissions (w for “write” and r for “read”). The
dashed arrows indicate the reduced write-authority bob and alice have on
carol’s file: they can influence the content of the file, but only by using carol.

We can take two approaches to prevent illegal use of carol:

1.3. Concepts and Definitions 11

(a) Indirect use and delegation of permissions:
Only the protection system can manipulate the permissions as values. It
prevents illegal use of carol by revoking and reactivating her permissions
when needed.

(b) Direct use and delegation of reified permissions:
Permissions become unforgeable values, for the entities to use and delegate
explicitly and on purpose. Now carol can prevent her clients from using
her in an illegal way, by demanding them to provide such permissions and
by using these delegated permissions for the right purpose.

Approach (a) is difficult to implement. The protection system, possibly with
the help of carol, must find out on whose behalf carol is using her permis-
sions.

For instance, when alice invokes carol’s service, carol could tell the pro-
tection system to disable all carol’s permissions, except for the ones she shares
with alice, before writing to the file that alice chose. For carol to be able
to log the action to carol’s file, carol’s permissions would need to be
re-activated again.

The protection system can apply dynamic delegation (delegation of alice’s
permissions to carol, but only in the context of alice’s invocation of carol),
and stack walking (inspect the invocation stack to find out who is invoking
whom) [WBDF97], but finding out exactly on whose behavior carol is us-
ing her permissions will still be hard. Practical solutions are approximative at
best (see sections 8.1.2 and 8.5.4).

Approach (b) is already implemented by capability based protection systems.
Capabilities function at the same time as designation to the target of a permission
and as that permission itself, reified as an unforgeable value entities can use and
convey purposefully.

carol can require her clients to communicate their choice of output file as an
argument to the service request, in the form of a write-capability to that file. If
alice chooses a file she has no write permissions to, carol’s attempt to write
output to that file will fail when she tries to use the value provided by alice as
a write-capability.

To enable alice to comply with carol’s requirement, capabilities allow en-
tities to delegate their permissions as values. It suffices for alice to have two
capabilities: one to invoke carol, and one to write to alice’s file, to be
able to delegate her file-capability to carol.

An important advantage of permissions as values is: the software developer can
use the normal invocation and scoping mechanisms to regulate delegation and
revocation. carol accepts capabilities as input arguments to a computation
request, and can drop them afterwards, simply by letting the capabilities go out
of scope. No other mechanism for dynamic delegation is necessary.

The main advantage of relinquishing delegation power to the entities, is that
POLA can be applied very strictly: carol will not need permissions to all her
client’s files. The clients themselves are expected to convey the necessary capa-
bilities to carol.

12 Chapter 1. Introduction

1.3.6 Behavior based Safety Analysis
Because of the many complex ways in which authority can be brought about, an up-
front worst-case analysis of the safety requirements is necessary. This thesis proposes
a practical approach to safety analysis, based on an explicit model of the software that
models the following aspects of safety enforcement:

1. How the protection system restricts the propagation of permissions.

2. In what circumstances the relied-upon entities (do not) use their permissions.

The second aspect is referred to as behavior. In “Robust Composition” [Mil06b]
Miller gives an overview of approaches to safety analysis, and describes this approach
as: calculating a behavior-based bound on eventual authority. Miller argues that this
approach is preferred, because it allows a tractable calculation of a non-trivial upper
bound on the authority that can be reached, that is “interesting” because it gets more
accurate when the behavior is modeled in greater detail.

1.3.7 Safe Approximation of Behavior
In this work, we use models that safely approximate the authority propagation in the
software to be implemented (or analyzed) by modeling a monotonic approximation to
the behavior of the software entities. This means that we will not be able to express di-
rectly in the model that a software component no longer uses a permission in conditions
it did use the permission before (the behavior based equivalent of revocation). This is a
restriction in our approach, that is not absolutely necessary to make the safety analysis
tractable. Therefore, non-monotonic refinements are considered to be interesting future
work.

However, the monotonic approach has the practical advantage that safe approxima-
tions of the behavior of a software entity at runtime can easily be inferred from program
code.

Chapters 2 and 5 will give an intuition about how the process of safely approximat-
ing behavior goes about. Several detailed examples will be provided in the chapters of
part II. The process is designed to allow incremental refinement of the model, starting
with a crude but safe description of the behavior of the relied-upon entities, and refining
that model step by step, if and where the analysis indicates that more refined behavior
is necessary to guarantee the safety requirements.

1.3.8 Designing for Safety, Relying on Collaboration
In object capability systems, no single entity can bring about authority on its own. If
alice has no capabilities, she has to wait for another entity to invoke her. But even
if alice has a capability designating bob, she can invoke bob, but the effect of that
invocation will depend on bob.

For instance, if alice has access to bob and carol, she may want to introduce
carol to bob, by invoking bob with the argument carol. Bob’s behavior may
be completely non-collaborative and effectively annihilate the effect of the invocation,
either by ignoring the invocation completely, or by accepting access to carol but
never ever using or propagating the accepted capability.

The term “collaboration” in the title of this thesis will be used to refer to pro-
tection systems in which no authority can be brought about by an entity without the

1.4. Thesis statement 13

collaboration of another entity. Collaborative protection systems make its easier to de-
sign software in which the safety requirements can be enforced by relied-upon entities,
strategically inter-positioned between the untrusted entities our software product must
rely upon for its intended functionality, but not for ensuring its safety.

In non-collaborative systems, two untrusted entities that have access to a third en-
tity cannot be restricted in their authority by the third entity. For instance, if alice
and bob are untrusted entities that have read and write permissions to carol, and
carol’s collaboration would not be needed to turn these permissions into actual autho-
rity, carol would not be able to prevent alice and bob from communicating with
each other by using carol as a channel. If carol’s collaboration would be neces-
sary she could fine tune the authority in the way she wanted, for instance by giving her
clients read authority only to data that was not written to her by her clients.

Secure programming is not easy, but collaborative systems at least provide a pow-
erful mechanism to ensure POLA: by programming relied-upon components to make
sure that no excess authority leaks to the untrusted components that have access to
them.

This thesis contains many examples of successful applications of this approach.
Some examples will simply prove that the relied-upon entities effectively guarantee the
safety requirements. Other examples will investigate possible alternatives for relied-
upon behavior, and provide insight in the conditions in which a pattern can be safely
applied in our software. Occasionally, we go even further and generate abstract pat-
terns of collaborating entities, to guarantee certain safety requirements. The abstract
patterns in this thesis correspond to Miller’s concept of “programmable abstractions
for access control” [MS03].

This work can be situated between software verification and the design of security
protocols. In software verification, abstract interpretation is applied directly to the pro-
gram code, to prove or refute general software requirements. In design and verification
of security protocols, abstract models of lower complexity are tested for safety. In this
work, abstract models of adaptable complexity are used to prove safety, and to analyze
the influence of relied-upon behavior on provable safety.

1.4 Thesis statement

Patterns of collaborating entities provide a practical way to design provably secure
software, in analogy to the use of design patterns for developing maintainable soft-
ware. A behavior based analysis of eventual authority in these safety patterns allows
the software engineer to reason about the necessity and effectiveness of protective mea-
sures, such as method interception and the interposition of software components that
are relied upon to use their access permissions in restricted ways. In capability-based
runtime environments that provide no ambient authority, the strategic interposition
of relied-upon components is sufficiently restrictive to enforce many practical safety
strategies, without the need for an ACL-based reference monitor.

1.5 Contributions

This section lists the contribution of this thesis. Chapter 2 will give an extended intro-
duction to the main contributions.

14 Chapter 1. Introduction

1.5.1 Major Contributions
1. The introduction of a new and practical formalism, Knowledge Behavior Mod-

els, that allows reasoning about safety requirements in patterns of interacting
entities, and has the required expressive power to be useful in secure software
engineering.

2. The flexible technique of modeling by aggregation, whereby (potentially in-
finitely) many runtime entities are modeled into a single subject whose beha-
vior is the union (lowest upper bound) of the individual behaviors. Aggregation
makes the model simple and tractable. We prove that this modeling technique
results in a safe approximation.

3. The domain specific declarative language SCOLL in which abstract patterns of
interacting entities and their safety requirements can be expressed, with a logical
semantics in terms of Knowledge Behavior Models. An iterative, incremental
approach to behavior model refinement, starting with a safe but possibly too
crude model, and gradually refining the model (while keeping it safe) when and
where necessary.

4. The development of a prototype safety analysis tool SCOLLAR, based on con-
straint programming, that implements the language SCOLL, including a web-
based version of the tool.

5. The application of SCOLL and SCOLLAR to several real world problems con-
cerning the safety and applicability of design patterns for secure software, in
capability based and ACL based paradigms, as a successful test of the thesis
statement.

6. A general contribution to the understanding of the nature and the properties of
capabilities, their formal representations, and the possibilities for applying capa-
bility based security.

1.5.2 Minor Contributions and Side Contributions
1. An analysis of the possible relations between authority and permissions in pro-

tection systems.

2. An exploration of authority flow graphs, as a possible complement to the rule-
based approach in the main contribution.

3. A motivated list of design principles for the design of capability-based, secure,
multi-paradigm languages.

Chapter 2

Overview of the Contributions

This chapter gives an intuitive overview of the main contributions in this thesis. This
chapter is recommended to all readers, regardless of the level of detail at which they
want to understand the contents and the relevance of the contributions.

The most important concepts used in the following chapters will be introduced,
even if some of them may need revisiting in later chapters. The reader will get a
general idea about the context in which the contributions can be appreciated and/or
applied. No proofs are included, as the contributions will all be discussed in depth in
their own chapter.

The examples in this chapter are simple and introductory. Practical and elaborated
examples are developed and discussed in chapter 8.

2.1 A New Formal Model for Safety Analysis

In safety analysis we investigate the relation between sets of possible actions and their
potential effects to understand what actions should be allowed or disallowed, in order
to avoid the effects that are unwanted or illegal. As in many other fields, the relation
between causes and effects can be very complex and dynamic, for instance because the
effects of possible actions can make more actions possible. We will call the potential
effects of the actions: “authority”.

Even when the actions are controlled by permissions, guarded and enforced by a
dedicated mechanism (a protection system), there is no guarantee that this relation is
even computable. This was shown in 1976 by Harrison, Ruzzo, and Ullman [HRU76].

This is an important result, but it should not discourage us to search for tractable
models that can approximate the action-effect relation from the safe side: possibly
over-estimating the potential effects but never under-estimating them. The tractable
models we encountered in the security literature are not practically useful for software
engineers to model the problems that are of concern to the safety in their software.

The Knowledge Behavior Systems (KBMs) proposed in this thesis represent a new
approach to model tractable and safe approximations, and were designed from the start
with these goals in mind:

1. Model not only the potential effects on the distribution of permissions, but all
potential effects that are relevant for safety, including indirect potential effects
like the indirect authority in figure 1.1.

15

16 Chapter 2. Overview of the Contributions

2. Model not only the restricting effects of permissions, but also the restricted use
of the permissions by the relied-upon parts in the software.

3. Provide flexible expressive power to model different parts in the software at their
own most appropriate level of detail.

4. Support the incremental refinements of existing models.

2.1.1 An Extended View on Protection States
In “Computer Security: Art and Science” [Bis04] Matt Bishop defines the protection
state as that part of the state of the computer system that is relevant for protection.
Bishop defines the state of a computer system as “the collection of the current values
of all memory locations, all secondary storage, and all registers and other components
of the system”.

This definition is too restrictive for our purposes, as it may not include all situations
that are relevant for safety, for instance if safety not only depends on the current state
but also on the previous states. For instance, it may be dangerous for the system to
traverse a certain series of states, because that could correspond to a message being
sent to an output device which could trigger a nuclear war.

We extend the term protection state to refer to all aspects that are relevant for secu-
rity, regardless of whether they can be derived from the current state of the computer.
Our models will of course be state transition systems, but their states will not necessa-
rily correspond to predicates about the current state of a computer system.

We also want to include not only the permissions in the protection state, but also
other forms of authority. Effects achieved by the orchestrated use of several permis-
sions by different entities may be as dangerous as the direct use of a single permission.

It was Bishop himself who, together with Snyder, identified the importance of in-
direct authority in their paper on Take-Grant models (Take-Grant systems) in 1977
[BS79]. In that paper, the concept of “de facto right” corresponds to indirect authority.
KBMs are an extension of Take-Grant models. The latter will be described in depth in
section 3.2.

Extending the Dimensions of the Permission Matrix

Traditionally, the protection state is depicted as a two dimensional matrix in which the
rows depict the subjects (the entities that can have rights) and the columns depict the
objects (the entities the subject’s right can apply to). The restriction to two dimensions
is not practical to model all the aspects of the extended protection states in a KBM.

Besides permissions and authority, our protection states must incorporate the re-
stricting influence of the relied-upon entities on the potential effects of possible actions.
Some entities may be relied upon to refrain from using some of their permissions, turn-
ing possible actions into actions that will never be actually performed. For instance,
Take-Grant models have a simple concept of passive subjects, called “objects”, who
never use any permission they have.

In some systems, entities may have the power to diminish or annihilate the potential
effects of possible actions. For instance if alice has invoke-permission to bob, bob
may be programmed to make no important changes to the protection state, and the
safety analysis could rely on that.

To allow software engineers to take both kinds of restrictions into account when
designing safe software or when analyzing existing software for safety, KBMs will

2.1. A New Formal Model for Safety Analysis 17

extend the protection state from a set of binary permission-predicates to a set of pred-
icates of arbitrary arity. Moreover, all entities will be modeled as subjects and objects
will be a particular type of subjects that cannot (or will not) accept permissions.

The Protection State in KBMs

We use predicates to present three different aspects of the protection state:

Permission predicates : usually binary, representing the traditional rights matrix. For
instance, the predicate access(A,B) could be used to express the permission
of subject A to access subject B.

We will not assume that the holder of a permission is directly aware of his per-
missions. A subject’s awareness of its environment will be modeled explicitly
with knowledge predicates. Only the protection system is directly aware of per-
missions between subjects. For all practical purposes, it would not matter if a
KBM would express this permission conversely as: accessibleBy(B,A).

Behavior predicates : of arbitrary arity, representing the positive influence a subject
has on the actual use of a permission and/or on the effect of using a permis-
sion. For instance, the predicate sendTo(A,B,X) could be used to express
that subject A is willing to invoke subject B with input argument X.

To underline the fact that it is subject A’s behavior, we will propose an alternative
notation that puts the first argument in front of the predicate label, separated by
a colon. By convention, we often prefix the label of a behavior predicate with
“may.” to indicate that we model possible behavior: behavior that we cannot
with certainty exclude, due to our limited knowledge of the entity’s behavior
restrictions, or to our safe (over-)approximation of the entity’s behavior in the
KBM.

A behavior predicate will usually have this form: A:may.sendTo(B,X)

Knowledge predicates : of arbitrary arity, representing potential effects. For instance,
the predicate sentTo(A,B,X) could be used to model the potential effect on
subject A of having successfully invoked subject B with input argument X.

Like behavior predicates, knowledge predicates have an alternative notation, to
underline what entity has the knowledge. By convention, we usually prefix the
label with “ did.” to indicate that we model knowledge about a successful
interaction that a subject can rely upon with certainty. The uncertainty is only in
our approximation of behavior, not in our model of the effects of behavior.

A knowledge predicate will usually have this form: A:did.sendTo(B,X)

2.1.2 Refining the Protection State
Once a KBM has been defined, it will be relatively easy to refine the model. The main
reason to refine the behavior of a relied upon entity is to express its restricted use of
permissions more accurately.

For instance, instead of using the predicate B:may.return(Y) to express B’s
possible willingness to return Y when invoked, we may need a more refined predicate
to express that B only returns Y when B received X in the same invocation. That could
be expressed by the refined predicate: B:may.exchange(X,Y).

18 Chapter 2. Overview of the Contributions

KBMs provide a general framework that allows the software engineer to incremen-
tally add refined behavior and knowledge, without having to re-model the whole KBM.

2.1.3 A Fixed Set of Subjects for a Finite Protection State
For the purpose of proving safety and finding safe abstract patterns, it is crucial that the
calculation of the eventual authority (potential effects) in the model is tractable. That
is the main reason why KBMs have a fixed, finite set of subjects.

For a KBM to be representative, all software entities must be modeled into this
fixed set of subjects. Subjects that model more that one entity are called “aggregated”
subjects. For aggregation to be safe, every predicate in the KBM that concerns an
aggregated subject must represent the possibility that the predicate holds in the software
for at least one of the entities aggregated into the subject. In other words, it must be
true for the subject in the model as soon as it is possible for one of the entities in the
software.

For instance, subject bob could be used to model a certain software entity, to-
gether with all the entities it may possibly create at runtime. Then, the predicate
access(bob,alice) will indicate the possibility that one of the entities aggre-
gated into bob has access to one of the entities aggregated into alice. Section 5.7.4
will prove that aggregation is a safe approximation approach.

Section 5.3.1 will show why and when aggregation is useful, and explain different
aggregation strategies. An elaborated example of a less trivial aggregation strategy is
presented in section 8.3.1.

2.1.4 Modeling Protection State Transitions
A protection system is not static: its protection state will change when actions are
performed. Rules in the protection system will express what actions are possible and
what potential effects every action has on the state of the protection system. In other
words, the rules define protection state transitions.

In traditional protection systems, the permissions are the (only) preconditions for
the rules, and the potential effects are all modeled as changes to the permission matrix.
For instance, the rule

grant(A,B) ∧ read(A,X)⇒ read(B,X)

would indicate that, if A has grant-permission to B and read-permission to X, then the
potential effect is that B also gets read-permission to X, because it was granted by A.

Compared to such permission-centric models, Take-Grant models take two impor-
tant steps towards more expressive protection state transitions:

1. The restricted influence of behavior is taken into account. For instance, the Take-
Grant rule “grant”, that propagates “de jure rights” (permissions), is only valid
for active granters:

grant(A,B) ∧ read(A,X) ∧ A:active() ⇒ read(B,X)

2. The potential effects of the rules can present all kinds of authority, not just per-
missions. For instance the Take-Grant rule “spy”, that propagates “de facto”
read-authority, can be represented as:

read(A,B) ∧ read(B,C) ∧ A:active() ∧ B:active()
⇒ deFactoRead(A,C)

2.1. A New Formal Model for Safety Analysis 19

These two extensions bring Take-Grant models very close KBMs. Two more ex-
tensions will be added:

3. The behavior of the relied upon subjects will no longer be restricted to active or
passive, but can be expressed to arbitrary precision. For instance, the following
rule could model the propagation of access permissions in an invocation-based
interaction model:

access(A,B) ∧ access(A,X) ∧ A:may.sendTo(B,X)
∧ B:may.receive()
⇒ access(B,X) ∧ A:did.sendTo(B,X) ∧ B:did.receive(X)

4. The behavior of a subject is no longer static, but can be adapted, in response to
what the subject can come to know about its environment. For instance, subject
alice can be programmed to invoke the subjects she has accepted when being
invoked. That could be expressed in a KBM as the following rule, applying only
to alice’s behavior:

alice:did.receive(X) ⇒ alice:may.sendTo(X,)

In KBMs, the rules that derive potential effects from possible actions are called
system rules. The rules that express a subject’s reaction to its environment are called
behavior rules. Behavior rules can only model dynamic behavior that monotonically
increases when the subject receives more knowledge.

Remark The de-jure rules in Take-Grant systems were viewed as a way to analyze
dataflow between entities. However, because data can also flow via covert channels
[Lam73], such analysis is not safe. The knowledge predicates in KBMs are not used
for data flow analysis. They do not represent knowledge of an arbitrary fact, but know-
ledge of a fact of which the subject also knows that it was received via a legal interac-
tion. Absence of such knowledge will never keep untrusted subjects in the KBM from
deploying their full behavior.

2.1.5 Knowledge Behavior Models

Definition 1. KBM
A KBM is a tuple 〈S, Pp, Pk, Pb, Sys, Beh〉, in which:

• S is a finite set of subjects.

• Pp is a set of permission predicate symbols with their arity

• Pk is a set of knowledge predicate symbols with their arity

• Pb is a set of behavior predicate symbols with their arity

• Sys is a set of system rules

• Beh is a set of behavior rules

Because no negation is allowed in the rules of a KBM, the logical semantics are
simple and equivalent to datalog [GM78].

20 Chapter 2. Overview of the Contributions

2.1.6 Safety Analysis with KBMs
KBMs specify a logical derivation, from an initial configuration as a finite set of pred-
icates, to the complete set of all predicates that are reachable in the model. If a KBM
models a safe approximation of the permissions, the behavior, and the authority pro-
pagation in a software program, the authority that cannot be derived in the model will
correspond to authority that cannot be reached in the software.

Therefore KBMs allow us to express and compute safety problems in the software.
To express safety problems, we define three more concepts:

Definition 2. Configuration
A configuration in a KBM is a set of predicate facts (grounded predicates), using pred-
icates that are defined in the KBM, over subjects that are defined in the KBM.

Definition 3. Safety properties
The safety properties of a KBM are the predicates that cannot be derived from a given
configuration by the rules in the KBM.

Definition 4. Liveness possibilities
The liveness possibilities of a KBM are the predicates that can be derived from that
configuration by the rules in the KBM. Contrary to safety properties, liveness possi-
bilities provide no proof that the authority will be reached or can be reached in the
modeled software. They will only be used to restrict the search for safe subject beha-
vior and safe configurations to those solutions in which the restrictions do not exclude
the liveness possibilities.

The following types of safety problems will be considered and solved in this thesis:

Simple Safety Problem : Given a KBM, an initial configuration for the KBM, and a
set of safety properties, the problem is: “Do the safety properties hold?”

In other words, is it impossible to derive any of the safety properties from the
KBM and the initial configuration.

Practical Safety Problem : Given a KBM, an initial configuration for the KBM, a
set of safety properties, and a set of liveness possibilities, the problem is: “Do
the safety properties and liveness possibilities hold?”

In other words, is it possible to derive all the liveness possibilities and at the
same time impossible to derive any of the safety properties from the KBM and
the initial configuration?

Behavior Maximization Problem : Given a KBM, an initial configuration for the
KBM, a set of safety properties and liveness possibilities, and a set of subjects
whose behavior must be maximized, the problem is: “What are the possibilities
to maximize the behavior of the given subjects, given that the safety properties
and liveness possibilities should hold?”

A behavior maximization problem asks for solutions that maximize the cooper-
ative behavior of a set of relied-upon subjects. It can have many solutions.

Knowledge Maximization Problem : Given a KBM, a minimal initial configuration
for the KBM min, a maximal initial configuration for the KBM max, and a set
of safety properties and liveness possibilities, the problem is: “What are the
possibilities to maximize the initial configuration between min and max, given
that the safety properties and liveness possibilities should hold?”

2.2. Safe Collaboration Language: SCOLL 21

A knowledge maximization problem asks for solutions that maximize the initial
configuration. It can have many solutions.

Generalized Maximization Problem : Given a KBM, a minimal initial configura-
tion for the KBM min, a maximal initial configuration for the KBM max, a set of
subjects whose behavior must be maximized, and a set of safety properties and
liveness possibilities, the problem is: “What are the possibilities to maximize the
initial configuration between min and max and the behavior of the given subjects,
given that the safety properties and liveness possibilities should hold?”

A generalized maximization problem combines a behavior maximization prob-
lem with a knowledge maximization problem. It can have many solutions.

2.2 Safe Collaboration Language: SCOLL
This section provides an intuition about the declarative language SCOLL. SCOLL will
be used to describe abstract patterns of interacting subjects, and to express the safety
problems we want to solve considering such patterns.

Chapter 6 presents SCOLL as an extensible language, based on a kernel language
with a logical semantics that is expressed in terms of KBMs.

2.2.1 Example: The Caretaker
To illustrate the purpose of SCOLL, we will program a simple version of the caretaker
pattern and explain the intuition behind the SCOLL program. This pattern is derived
from Redell’s [Red74] pattern of the same name. An extended version of the caretaker
pattern will be examined in section 8.2.

The initial situation in the pattern is depicted in figure 2.1.

alice

caretaker
(proxy)

carol

bob

revokable
authority

 to use carol's
service

alice

caretaker
(stopped)

carol

bob

alice

caretaker
(stopped)

carol

bob

before revocation revocation succeeded revocation failed

Figure 2.1: The caretaker pattern, before and after revocation.

The left part of figure 2.1 shows the initial situation. A subject alice, with access
to bob and to carol, wanted to give bob revocable authority to carol’s services.

22 Chapter 2. Overview of the Contributions

Instead of introducing carol to bob, she has introduced bob to a proxy subject,
caretaker. The caretaker is relied upon to:

• act as a transparent forwarder: forward all requests to carol, and return what
carol returns to the request.

• stop acting as a transparent forwarder as soon as the revoke instruction is given,
in order to end bob’s authority to use carol’s services

• do nothing else

The middle part of figure 2.1 shows the situation after alice has told caretaker
to stop proxying: bob no longer has the authority to use carol’s service, because the
caretaker stopped collaborating. The rightmost part of figure 2.1 shows the situa-
tion to be avoided: the revocation fails here since bob no longer needs the caretaker
because he has got direct access to carol and can invoke carol’s services directly.

For this simplified example, we will assume that alice will not use her permis-
sions after the initial set-up, except for eventually giving caretaker the revoke
instruction.

These are the safety problems we want to solve:

1. Can we prove that, regardless of carol’s behavior, bob can never get direct
access to carol (right part of figure 2.1) to render alice’s revocation efforts
futile?

2. If we cannot prove that, we want to know on what restrictions in carol’s beha-
vior we have to rely, to guarantee that bob’s authority will remain revocable.

The complete caretaker pattern analysis in section 8.2 will also take alice’s po-
tential influence into account.

2.2.2 Code Example for the Caretaker Pattern

Let us consider two code examples that correspond to the caretaker pattern. The code
examples will help us to understand the SCOLL program that we will use to describe
the caretaker pattern.

Figure 2.2 shows the pattern in Oz-E [SV05], the capability-secure variant of Oz.
A capability secure language is a memory safe language, in which no entity (object,
procedure, closure, . . .) can have access to an entity that provides authority, without
proper introduction by an other entity. In other words, entities have no authority when
they are loaded. Oz-E is future work, and its major design goals are presented in
chapter 10.

Note that, to be compatible, we made all entities functions with one input and one
output argument. Alice does not use its arguments, but only invokes Bob with the
input argument Caretaker. That will allow Bob to use the caretaker.

Bob’s code is unknown, and we will make no assumption about it. Therefore we
must assume that Bob will do everything to break our safety requirements.

Caretaker is a classical proxy, apart from the fact that it checks its private
boolean variable Proxying, before forwarding any invocation. Proxying will be-
come false as soon as someone sends revoke to the caretaker.

2.2. Safe Collaboration Language: SCOLL 23

Alice = proc{$ In Out}
{Bob Caretaker _} % introduce caretaker to bob
{Delay 60000}
{Caretaker revoke _}

end
Bob = {{Link ["bobModule.ozf"]}.1.makeBob}
Caretaker = local Proxying = {NewCell true}

in
proc{$ In Out}

if In == revoke then Proxying := false
elseif @Proxying then {Carol In Out}
end

end
end

Carol = proc{$ In Out}
. . .

end

Figure 2.2: Simple caretaker in Oz-E.

2.2.3 SCOLL code for the Caretaker Pattern
Figure 2.3 shows the pattern (program) in SCOLL. SCOLL programs always exist of
exactly six parts, identified by the following keywords:

1. declare : the predicates that will be used in the program

2. system : the system rules that govern authority propagation

3. behavior : the different types of behavior that will be used to model the beha-
vior of the subjects

4. subject : the subjects that play a role in the pattern

5. config : the initial configuration of the pattern

6. goal: the safety properties and the liveness possibilities

Before we can give an intuition about the meaning of every part in the SCOLL
program, we have to consider the interaction model: how the subjects in the pattern
interact and how this interaction can influence the propagation of access.

2.2.4 The Interaction model
By themselves, the graphs in figure 2.1 give us no indication of how access can propa-
gate in the pattern. However, since our analysis is going to be applied to software in
Oz-E, we have all we need to model a safe approximation of the interaction model.

It is important that we model all possible ways in which access can propagate in
these languages, but we don’t have to do that into detail. Moreover, since Oz-E is a
capability secure language, we know that no access can be gained without interaction
(See chapter 10).

All interaction mechanisms in these languages – whether they involve actual in-
vocation of functions or procedures, message sends between objects, assignments or

24 Chapter 2. Overview of the Contributions

declare
permission: access/2
behavior: may.sendTo/3 may.getFrom/2 may.return/2

may.receive/1
knowledge: did.sendTo/3 did.getFrom/3 did.return/2

did.receive/2
system

access(A,B) access(A,X) B:may.receive()
A:may.sendTo(B,X)
=> access(B,X) A:did.sendTo(B,X) B:did.receive(X)
access(A,B) access(B,X) A:may.getFrom(B)
B:may.return(X)
=> access(A,X) A:did.getFrom(B,X) B:did.return(X);

behavior
UNKNOWN: { => may.sendTo(A,X) may.getFrom(A)

may.return(X) may.receive();}
MINIMAL: {}
ALICE: {isBob(B) isCaretaker(C) => may.sendTo(B,C);}
PROXY: { => may.receive();

isCarol(C) => may.getFrom(C);
isCarol(C) did.receive(X) => may.sendTo(C,X);
isCarol(C) did.getFrom(C,X) => may.return(X);

subject
alice: ALICE
bob: UNKNOWN
caretaker: PROXY
? carol: MINIMAL

config
access(alice,alice) access(alice,bob)
access(alice,caretaker) access(alice,carol)
access(bob,bob)
access(caretaker,caretaker)
access(caretaker,carol)
access(carol,carol)
alice:isBob(bob) alice:isCaretaker(caretaker)
caretaker:isCarol(carol)

goal
!access(bob,carol)

Figure 2.3: Simple caretaker in SCOLL.

2.2. Safe Collaboration Language: SCOLL 25

bindings – can be modeled abstractly as invoke-respond interactions where an invoker
takes the initiative to interact with a responder. The propagation of access during an
abstract invocation can go in either direction: from invoker to responder or from re-
sponder to invoker.

A simple model for abstract interaction is this:

1. If and entity A has access to a entities B and X, and A initiates an interaction with
B to pass X to B and B accepts access when it is invoked, then the propagation
succeeds. As a result, B will also have access to X, and A and B will both have
knowledge about successful interaction.

2. If and entity A has access to an entity B, and B has access to an entity Y, and
A initiates an interaction with B and B return access to Y when it is invoked
and A accepts access from its responders, then the propagation succeeds. As a
result, A will also have access to Y, and A and B will both have knowledge about
successful interaction.

With this interaction model in mind, we can now explain the two first parts of the
SCOLL program in figure 2.3.

2.2.5 The declare Part.
The predicates defined in this part will form the basic parts of all the SCOLL state-
ments. All predicates are declared in the form: <label> ‘‘/’’ <arity>, as can
be seen in figure 2.3.

Three kinds of predicates are distinguished, and indicated by their proper keywords:

1. permission : Only one predicate is declared here: access/2 with arity 2,
to model the only conditions we have in our interaction model that do not depend
on the way the entity is programmed. Because Oz-E is capability secure, access
is neither ambient nor forgeable and is therefore a real permission.

2. behavior : The other conditions we have in our interaction model are beha-
vior predicates and must be declared here:

• may.sendTo/3 : a ternary condition derived from the first rule in our in-
teraction model. A:may.sendTo(B,X) indicates that subject A is will-
ing to invoke B and pass X as an input argument to the invocation.

• may.getFrom/2 : a binary condition derived from the second rule in our
interaction model. A:may.getFrom(B) indicates that subject A is will-
ing to invoke B and accept all access that B will return from that invocation

• may.return/2 : a binary condition derived from the first rule in our
interaction model. B:may.return(X) indicates that subject B is willing
to respond (r) when being invoked, by passing X to the invoker.

• may.receive/1 : a unary condition derived from the second rule in
our interaction model. B:may.receive() indicates that subject B is
willing is willing to respond when being invoked, by accepting all access
the invoker will pass in the invocation.

3. knowledge : Here we declare the predicates that will model all possible ef-
fects of successful interaction in our interaction model, except for the propagated

26 Chapter 2. Overview of the Contributions

permissions. These predicates are called “knowledge” predicates, because they
represent knowledge an entity can have about a successful interaction it was in-
volved in.

When modeling the restricted behavior of relied-upon entities, we will use know-
ledge predicates to specify the conditions in which the entity is willing to coop-
erate in an interaction.

• did.sendTo/3 : a ternary predicate derived from the first rule in our
interaction model. A:did.sendTo(B,X) is knowledge for subject A,
indicating that it invoked B and passed X to B.

• did.getFrom/3 : a ternary predicate derived from the second rule in our
interaction model. A:did.getFrom(B,Y) is knowledge for subject A,
indicating that it invoked B and accepted access to Y returned by B in that
invocation

• did.return/2 : a binary predicate derived from the second rule in our
interaction model. B:did.return(X) is knowledge for subject B, indi-
cating that it was invoked and responded by passing X to the invoker.

• may.receive/2 : a binary predicate, derived from the first rule in our
interaction model. B:did.receive(X) is knowledge for subject B, in-
dicating that is was invoked and responded by accepting access to X from
its invoker.

Note that we did not include the invoker in the knowledge available to the re-
sponder, because in Oz-E the responder does not get access to the invoker.

2.2.6 The system Part
This part must contain a list of system rules that express the interaction model in terms
of the predicates defined in the declare part.

Like all rules in SCOLL, system rules are denoted as an implication with an (op-
tional) list of preconditions on the left hand side, the implication sign (“=>”), a list of
postconditions on the right hand side, and a final delimiter “;”.

The precondition and postcondition of the rule are the conjunction of the listed
predicates.

system
1. access(A,B) access(A,X) B:may.receive()

A:may.sendTo(B,X)
=> access(B,X) A:did.sendTo(B,X) B:did.receive(X);

2. access(A,B) access(B,X) A:may.getFrom(B)
B:may.return(X)
=> access(A,X) A:did.getFrom(B,X) B:did.return(X);

The reader can easily verify that these two rules are the formal expression of the two
informal rules of our interaction model in section 2.2.4, expressed with the predicates
of section 2.2.5.

This particular interaction model will be reused on several occasions in this the-
sis, but we will also encounter refinements of this model and examples of completely
different interaction models.

2.2. Safe Collaboration Language: SCOLL 27

2.2.7 The behavior Part

The behavior of alice, bob, caretaker, and carol are modeled here as a set of
behavior rules, expressed in terms of the knowledge and behavior predicates of section
2.2.5. For the first time we will have to look at the actual code in section 2.2.2.

The behavior of the entities is abstracted from the actual entity to its behavior type.
Because of this abstraction, all predicates in this part will be used with their original
arity minus one. For instance to express that bob’s behavior invokes an entity B and
passes on access to X, we will write may.sendTo(B X) in bob’s behavior type to
indicate: bob:may.sendTo(B X).

Abstracting the behavior from the entity like this, makes it possible to reuse the
same behavior type for different entities and will make it easier to experiment with
different behaviors.

In this example every subject has a unique behavior type. Every behavior type has
the form:

<NAME> “:” “{” [rule]* “}”.
The name of the behavior type is written in capitals.
The left hand side of a behavior rule is a list of knowledge predicates that indicate

the conditions in which an entity with this behavior will cooperate in invocations. The
right hand side will indicate the behavior with a list of behavior predicates.

Similar to system rules, the lists on either side of a behavior rule are interpreted as
conjunctions and the preconditions can be empty.

UNKNOWN:
{ => may.sendTo(A,X) may.getFrom(A) may.return(X)
may.receive();}
This will be the behavior for all “unknown” subjects: subjects about which we have
no sufficient information about how they are (or will be) programmed. To be safe, we
can only assume that these subjects are maximally interactive. They will do anything
that the interaction model allows. Therefore the only behavior rule we need is one that
derives all behavior predicates from no preconditions.

MINIMAL: {}
If we are sure that a relied upon entity never interacts with other entities, we can sim-
ply model its behavior as an empty set of rules. However, in this case we will use the
MINIMAL behavior for a different purpose: we will use it as the lower bound for the
behavior that can be allowed for carol, without violating the safety properties.

ALICE: {isBob(B) isCaretaker(C) => may.sendTo(B,C);}
Compare this rule with the code for Alice in the Oz-E example of section 2.2.2. In the
first statement, {Bob Caretaker _}, Alice invokes Bob with the input argument
Caretaker and ignores any returned value.

The influence of this statement is expressed by this behavior rule: if the entity
assumes that B is bob and that C is caretaker, it will invoke B and pass C to it.

The predicates isBob/2 and isCaretaker/2 are binary knowledge predates
that are private to the entity whose behavior is expressed. Private knowledge predicates
can be used at will, to express the internal logics of a subject. They form an exception
to the rule that every predicate must be declared in the declare part. We will meet
these predicates again when describing the initial configuration in section 2.2.9.

The second statement, {Delay 60000}, has no effect on the propagation of autho-

28 Chapter 2. Overview of the Contributions

rity and is therefore not modeled. Since SCOLL defines KBMs and KBMs are mono-
tonic approximations, only the authority increasing effects must be modeled.

The third statement, {Caretaker revoke _}, is not modeled because the state-
ment’s effect is not increasing the authority in the model: no access is propagated, only
the information (data) represented by the literal revoke. Because our simple interac-
tion model does not handle the propagation of information, no behavior in our model
can depend on the availability of information to the subject.

For instance if Caretaker’s code would generate authority increasing effects that
depend only on the availability of information (e.g. the arrival of the revoke instruc-
tion), we would model that behavior in SCOLL unconditionally.

Since Alice’s code cannot have any other authority increasing effects, this single
rule models her complete behavior.

PROXY: {
=> may.receive(); (1)

isCarol(C) => may.getFrom(C); (2)
isCarol(C) did.receive(X) => may.sendTo(C,X); (3)
isCarol(C) did.getFrom(C,X) => may.return(X); (4)

Let us compare these four rules with the code for Caretaker in the Oz-E example
of section 2.2.2.

Since the local variable Proxying is never passed outside Caretaker’s scope,
we don’t have to model that variable. The variable has influence on Caretaker’s
code but we are not required to take that influence into account when safely modeling
caretaker (the subject) in SCOLL. It is OK to always assume the most collaborative
behavior.

Let us move on to the definition of the proc{$ In Out} part. From the mere
fact that In is used further on in the code, we can already model the first rule for the
caretaker subject: it will rCollect() input unconditionally. In Oz-E the Out

argument can be used for additional input as well as for output, but that will not change
or add anything to the first rule because that rule states already that caretaker will
unconditionally accept input from its invokers.

The next statement is an if .. then ... else... end statement which we
will safely approximate by ignoring the test and assuming that both outcomes are pos-
sible. We can safely ignore the test In == revoke because it has no effect.

The first possible outcome, Proxying := false, will not be modeled because no
access is propagated and the influence of the value assigned to the variable Proxying
is approximated safety by assuming that all values can be assigned to it.

The second possible outcome, {Carol In Out} is responsible for the three re-
maining behavior rules. Since Caretaker only invokes the entity known to him as
Carol, it is OK to use isCarol(C) as a precondition for all these rules.

Rule (2) expresses the fact that the caretaker will accept return values from the
subjects C he refers to as isCarol(C). In Oz (and Oz-E), returning a value means
that the responder binds a logical variable passed as an argument of the invocation.

Rule (3) expresses the fact that the caretaker will forward values he accepted as
a responder, to the subjects C he refers to as isCarol(C). That models the situation
in which either In or Out\ or both are bound by the invoker.

Rule (4) expresses the fact that the caretaker will return the values he acquired
as return values from invoking subjects C he refers to as isCarol(C). That models

2.2. Safe Collaboration Language: SCOLL 29

the situation in which either In or Out\ or both are not bound by the invoker but by
carol.

Remark In this example we modeled the SCOLL program to safely approximate the
existing code in section 2.2.2 to make it easier to explain the meaning of the SCOLL
program. In principle, real code is not necessary to write a SCOLL program. All that
is needed is an abstract interaction model in which the abstract behavior of the subjects
can be expressed. This technique is useful in the design phase when the software
engineer wants to reason about the safety in abstract patterns before applying them to
real code.

2.2.8 The subject Part

In this part the subjects are listed and assigned their behavior in the following form:
<subjectName> “:” <BehaviorName>.

Subjects names start with a lowercase letter.

subject
alice: ALICE
bob: UNKNOWN
caretaker: PROXY
? carol: MINIMAL

To indicate that we want to maximize carol’s behavior, starting from a given
minimal behavior “MINIMAL”, carol is preceded by a question mark.

For the SCOLL program to be a safe approximation of the code in section 2.2.2,
every possible entity in the software must be modeled as a subject, including the entities
created at runtime. Because the subject bob has maximal behavior (“UNKNOWN”),
the default aggregation strategy allows us to model all entities that are created by the
BobModule or by Bob, into the same subject bob.

2.2.9 The config Part

This part describes the initial configuration of the pattern as a list of predicate “facts”.
Facts are grounded predicates over the subjects declared in the subject part.

config
access(alice,alice) access(alice,bob)
access(alice,caretaker) access(alice,carol)
access(bob,bob)
access(caretaker,caretaker)
access(caretaker,carol)
access(carol,carol)
alice:isBob(bob) alice:isCaretaker(caretaker)
caretaker:isCarol(carol)

The access permissions reflect the situation in the the code, except for the additional
self-access we assume for every entity. Assuming self-access is not always necessary
but it is a safe precaution, certainly when modeling code in object oriented languages
that have a self pseudo variable.

30 Chapter 2. Overview of the Contributions

Because bob is unknown, it is imperative that bob is modeled with initial access to
himself.

The last two lines in the config part assign initial private knowledge facts to
alice and caretaker.

2.2.10 The goal Part

This part states the safety properties and the liveness possibilities. They cannot be
derived from the code but are inherent to the safety problem we want to solve.

Liveness possibilities are knowledge facts or permission facts, indicating what
authority should not be prevented by the restricted behavior of the relied-upon sub-
jects or by the limitations in the initial configuration.

Safety properties are knowledge facts or permission facts, preceded by an excla-
mation mark indicating what authority should be provably unattainable from the initial
configuration.

goal
!access(bob,carol)

In this simplified caretaker pattern we have a single safety property stating that
bob should not get access to carol because that would render the revocation of
the caretaker futile.

2.2.11 Applications

SCOLL is naturally suitable for modeling software problems in capability based lan-
guages. Capability based languages allow the application of POLA at all levels of
detail in software.

But SCOLL is a versatile language and can model all kinds of systems, configura-
tions and problems for the purpose of safety analysis. It is useful for pedagogical pur-
poses because it can formally express patterns and mechanisms of interacting subjects
at a suitable level of detail to allow us to reason about the boundaries of the effects
(authority) of interactions. It can be used to formally express and compare different
strategies for safety enforcement and different styles of protection systems, including
ACL based reference monitoring and systems with hybrid protection systems.

Because SCOLL abstracts from the actual interaction model, we also expect to find
applications outside the domain of software engineering.

Chapter 6 will describe SCOLL, its syntax and semantics, and its possible exten-
sions.

2.3 SCOLLAR

SCOLLAR is a prototype implementation of SCOLL, based on constraint program-
ming in Mozart/Oz [Sch02]. This section provides an intuition about its purpose in
safety analysis.

Detailed instructions for the use of SCOLLAR are presented in chapter 7. SCOL-
LAR’s constraint based design and implementation will be explained in sections 7.6
and 7.7.

2.3. SCOLLAR 31

2.3.1 Purpose

SCOLLAR is a tool to analyze safety in patterns of collaborating subjects expressed in
SCOLL. It can be used for several purposes:

1. To check if a given pattern guarantees a set of safety properties without necessa-
rily preventing another set of liveness possibilities.

For instance, subject bob should never get access to subject carol (safety),
but there should at least be one possible scenario in which carol gets access to
bob (liveness possibility) .

2. To search for (all) safe ways to restrict the interaction between the subjects in the
pattern, such that:

• No safety property is violated

• No liveness possibility is prevented

• Every set of restrictions (solution) is minimal for safety: adding a restric-
tion is not necessary and removing a restriction will break at least one safety
property.

The user decides what kind of restrictions can be imposed. Typically, the im-
posed restrictions will affect the behavior of the subjects the user can rely on
or control and/or part of the initial configuration of the pattern (e.g.: part of the
initial permissions or the initial state of the subjects).

Using SCOLLAR in this way is most useful when designing/programming se-
cure patterns of interaction between some trusted (relied upon) and some un-
trusted (unknown) subjects.

2.3.2 Example

Figure 2.4 shows the web-based user interface of SCOLLAR, with the SCOLL program
we specified in section 2.2.3. A push on the “solutions” button instructs SCOLLAR to
calculate the necessary restrictions in carol’s behavior.

Figure 2.5 shows the two solutions to carol’s behavior, found by SCOLLAR. The
solution is presented as an access graph, generated in GraphViz [GV05], and a table
that gives an overview of the solutions.

The graph will only be generated when access/2 is declared as a binary per-
mission in the SCOLL pattern. Future versions of SCOLLAR will allow the user to
choose the binary relations to be visualized. The solid arrows indicate access that was
present in the (minimal) initial configuration. The dashed arrows represent access that
is attainable in all solutions. The dotted arrows indicate access that is attainable it at
least one solution but not in all.

The table shows the solutions in the columns. In the rows it lists carol’s behavior
facts that are illegal in at least one solution. Behavior that is to be prevented is indicated
with “0”.

In both solutions the last row indicates that carol should not return herself when
being invoked (may.return(carol carol). Solution 1 adds the restriction that
carol should not invoke bobwith herself as input argument (may.sendTo(carol
bob carol).

32 Chapter 2. Overview of the Contributions

Figure 2.4: The simple caretaker example in SCOLLAR

2.3. SCOLLAR 33

Figure 2.5: Overview of the solutions in SCOLLAR

34 Chapter 2. Overview of the Contributions

Solution 2 restricts carol from accepting input may.return(carol,carol).
That will prevent her from getting access to bob and therefore her invoking behavior
towards bob needs no restrictions.

The top row of the table contains a button for every solution. Clicking on that
button will reveal a page that shows the complete details of the solution:

• The access graph corresponding to the maximal propagation of access for the
solution.

• A table for every subject, listing that subject’s permissions, knowledge, and
behavior facts, and indicating for each of them whether they are attained, not-
attainable, or irrelevant in the solution.

Chapter 7 will explain in detail how the solutions should be interpreted and what
other options SCOLLAR provides. Chapter 8 contains a set of elaborated examples of
safety analysis in SCOLLAR, of which the solutions are show and discussed.

Part I

Foundations

35

Chapter 3

Formal Systems for Safety
Analysis

This chapter reviews two existing and well known formal protection models that have
had a major influence in the domain of security analysis. They are presented here be-
cause they form the basis of the new formalism called “Knowledge Behavior Models”,
described in chapter 5.

The first of them, named “Formal Protection Systems”, was presented in 1976 by
Harrison, Ruzzo, and Ullman [HRU76]. Formal Protection Systems are very expressive
and were used to prove that the safety question in general – whether a certain right can
get into the “wrong” hands in a certain situation – is not computable.

On the other side, less concerned with expressive power than with tractability, was
the research on tractable formal systems in which the safety properties are computable
in polynomial time. One such system was presented in the same year by Jones, Lipton
and Snyder [JLS76], and has safety properties that can be computed in time linear to the
size of the problem. The second formalism we discuss in this chapter is an extension of
this system, proposed in 1979 by Bishop and Snyder, and called “Take-Grant Systems”
[BS79].

The original Take-Grant systems are not well suited for practical safety analy-
sis. Many modifications, extensions, and alternatives were proposed [Bis81, San88,
FB96]. None of these explicitly explored the notions of behavior and collaboration,
even though we can discover the embryonic form of these notions in the original Take-
Grant systems.

We will rediscover the notions of behavior and collaboration in chapter 4 where we
present capability-based security. We will develop these notions into explicit formal
concepts in chapter 5 where they will play a central role in our new practical formalism
called “Knowledge Behavior Models”.

3.1 Formal Protection Systems

We will refer to formal protection systems as HRU systems or simply HRU.

37

38 Chapter 3. Formal Systems for Safety Analysis

3.1.1 Introduction
The protection state of a system is modeled as a two-dimensional matrix. The rows of
that matrix represent subjects (entities that can have rights), and the columns represent
objects (entities a subject can have rights on). The cells of the matrix contain the actual
rights the subject has on the object.

Possible transitions in the protection state are conditional on the rights that are
present in the protection state. The following section defines the formal concepts.

3.1.2 Definitions
Definition 5. HRU Protection System

A protection system, as defined in [HRU76], is a couple 〈C,R〉 in which:

• C is a finite set of commands.

• R is a finite set of generic rights (e.g. read, write, grant, . . .).

All rights in R are binary: a subject can have rights from R on an object. For
instance if the right read is present in a cell of the table where the subject in the row is
alice and the object in the column is rootDirectory, that means: alice has the right to
read the rootDirectory.

The commands in C each describe a set of similar transitions between configura-
tions, which will be defined hereafter. The commands are expressed using a series of
formal arguments (variables) of which the actual values represent the subjects and/or
objects that are relevant in the state transition.

Definition 6. HRU Configuration

A configuration is a tuple 〈S, O, P 〉 in which:

• S is a countable set of subjects (modeling entities that can have rights).

• O is a countable superset of S containing objects (the entities subjects can have
rights on).

• P is a matrix in which the rows represent the subjects in S and the columns
represent the objects in O. At the intersection P (s, o) of row s and column o,
the matrix P stores the set of rights s has on o.

Formally, P is a function from S ×O → 2R.

HRU Commands

The commands of a protection system are expressed with formal parameters in the
form:

command c(X1, X2, . . . , Xn)
if r1 ∈ P (Xi1 , Xi2)

. . .
rk ∈ P (Xj1 , Xj2)

then operation1

. . .

3.1. Formal Protection Systems 39

operationm

end
When a command is applied, some of its actual arguments will range over O, while

others can only be in S.
The part between if and then is optional. It contains a list of explicit precon-

ditions for the command to be applicable, in the form: r ∈ P (X1, X2), requiring the
presence of r in the cell at row X1 and column X2 in the matrix.

The remaining part between then and end is called the command’s body, and con-
sists of a sequence of primitive operations that are to be applied in order and atomically
(without interference of other commands). Operations represent basic transformations
to a configuration.

Both parts can also contain implicit preconditions. A reference to a cell P (X1, X2)
in either of the parts expresses the implicit preconditions that X1 ∈ S and X2 ∈ S∪O.
The operation-specific implicit preconditions are listed with the operations in table 3.1.

Operations : There are six kinds of operations. We present them below as tran-
sitions Qi ⇒opi Qi+1 from a configuration Qi = 〈S, O, P 〉 to Qi+1 = 〈S′, O′, P ′〉,
with their preconditions on Qi and their effects in Qi+1.

Table 3.1: Primitive operations on HRU configurations

operation conditions effects
enter r into P (s, o) r ∈ R Qi+1 = 〈S, O, P ′〉

s ∈ S P ′(s, o) = P (s, o) ∪ {r}
o ∈ O (x, y) 6= (s, o) ⇒ P ′(x, y) = P (x, y)

delete r from P (s, o) r ∈ R Qi+1 = 〈S, O, P ′〉
s ∈ S P ′(s, o) = P (s, o) \ {r}
o ∈ O (x, y) 6= (s, o) ⇒ P ′(x, y) = P (x, y)

create object o o /∈ O Qi+1 = 〈S, O ∪ {o}, P ′〉
∀x ∈ S : P ′(x, o) = {}
∀(x, y) ∈ S ×O : P ′(x, y) = P (x, y)

create subject s s /∈ O Qi+1 = 〈S ∪ {s}, O ∪ {s}, P ′〉
∀(x, y) ∈ ({s} ×O) ∪ (S × {s}) :
P ′(x, y) = {}
∀(x, y) ∈ S ×O : P ′(x, y) = P (x, y)

destroy object o o ∈ O \ S Qi+1 = 〈S, O \ {o}, P ′〉
P ′ = P |S×(O\{o})
(P restricted to domain S × (O \ {o}))

destroy subject s s ∈ S Qi+1 = 〈S \ {s}, O \ {s}, P ′〉
P ′ = P |(S\{s})×(O\{s})

The operations in a command specify additional implicit preconditions (second
column in table 3.1) on S and O in the configuration Qi. Adding or deleting a right
requires the existence of the subject in S and of the object in O. The creation of subjects
(objects) requires that the subject (object) does not yet exist in S (O). Destruction
operations require previous existence in S or O.

Adding a right to P (s, o) does not require the right to be absent from P (s, o) before:
in that case the operation simply has no effect. Dropping a right is always possible too

40 Chapter 3. Formal Systems for Safety Analysis

and has no effect if the right was absent.
Combining all these preconditions, a command α can be executed in configuration

Q if :

• Every precondition expressed between if and then in α applies in Q, and

• ∀i ∈ {i . . . n} with n being the number of operations in α
and opi being the i-th operation in α:
The (implicit) preconditions for opi apply in Qi such that
Q = Q1 and ∀i ∈ {i . . . n} : Qi ⇒opi Qi+1

To decide whether or not a configuration can evolve into a certain (unsafe) state,
the intermediate states reached by executing the individual operations of a command in
turn will be taken into account. Commands that introduce a right in one operation and
remove it in the next one are recognized as having introduced the right.

If more than one command is ready to be executed, any one of them can be chosen
non deterministically.

3.1. Formal Protection Systems 41

Definition 7. A Step Q `α Q′

If a configuration Q contains a series of entities (subjects and objects) onto which
a command α that contains n operations opi can be applied, the configuration resulting
from executing the command is:

Q′ = Qn such that Q = Q0 and Q0 ⇒op1 Q1 ⇒op2 . . . ⇒opn
Qn.

We write Q `α Q′. When α is not relevant, this is abbreviated to : Q ` Q′. The
transitive, reflexive closure of ` is denoted `∗.

3.1.3 The Safety Problem
A configuration is safe for a certain right r ∈ R if this right cannot be introduced
into the access matrix (leaked) by any operation inside any command that can become
executable after a finite number of steps `. To express more specific concerns that
consider also object and/or subject roles (e.g. what object is the right pointing at or
what subject is the right leaked to) a purpose-built protection system and configuration
must be derived from the original one, in which the concern can be expressed as a
simple leakage problem.

Definition 8. Leakage:
Given an arbitrary protection system 〈C,R〉,
an arbitrary configuration Q = 〈S, O, P 〉,
and an arbitrary right r ∈ R
Q leaks r ⇐⇒ ∃ command α ∈ C and ∃ Q′, Q′′ : Q′ = 〈S′, O′, P ′〉

and Q′′ = 〈S′, O′, P ′′〉
Q `∗ Q′ `α Q′′

α’s body = op1 . . . opn

α is applied to the actual arguments X1 . . . Xm

∃ Q1 . . . Qn : Q′ = Q0 ⇒op1 Q1 ⇒op2 . . . ⇒opn
Qn = Q′′.

At least one operation opi in α is: enter r into P (Xj , Xk)
such that :
Qi−1 = 〈Si−1, Oi−1, Pi−1〉, Qi = 〈Si−1, Oi−1, Pi〉, and r /∈ Pi−1(Xj , Xk)

Notice that the resulting configuration Q′′ may not have an extra right r in its
matrix. In that case the enter operation in α must have been followed by a com-
plementary delete or destroy operation in the same command, that removed the
trace from the final result Q′′. As a matter of fact, Q′′ may very well be identical to Q′

or even to the original Q.

Rights Exertion versus Delegation

Commands that perform only such “encapsulated” leaks effectively prevent other com-
mands from making use of the leaked rights. Following [HRU76] this is useful to
model the exertion of a right: e.g. calling a write procedure on a file gives the caller
temporary write-access to the file but the right remains encapsulated in the procedure
call and cannot be used by other commands. Inter-command leakage could then be
reserved to model rights delegation.

Our main objection to this interpretation of internal leakage is that it is not com-
positional. How would we model a call to a procedure that calls the write procedure?
How would we model an arbitrary long chain of calls ending in a call of the write

42 Chapter 3. Formal Systems for Safety Analysis

procedure? Using the intra-command leaking approach we would have to compose the
operations of the commands that model a single call into new commands: one for every
possible chain of calls. Even with a finite set of subjects, each modeling a procedural
closure, this could easily lead to an infinite number of commands, which is not allowed
in the definition of protection systems.

We could consider using an extra right exerted r to indicate that a right r was
exerted and replace all intra-command leakage of r by inter-command leakage of
exerted r. This is a compositional way to model right exertion and it renders intra-
command leaks superfluous for this purpose. The set of rights R is still finite: it would
only double in size.

The alternative approach to model rights exertion does not remove the need to de-
tect intra-command leaks. When an enter operation is followed by a destroy of
the subject or the object involved in the leak, the exerted r right can no longer be
detected in the resulting configuration. This poses no problem for the composed right
exertion though: destroy could model a procedure and its closure going “out of
scope” before the chain of calls ends.

This problem shows already that modeling actual safety problems in HRU systems
can be hard, even if the formalism itself is Turing Complete (Section 3.1.4).

Converting Complex Safety Problems

To consider the leakage of a right r pointing to a particular object x ∈ O, [HRU76]
suggests deriving the protection system 〈C ′, R′〉 from 〈C,R〉 and the configuration
Q′ = 〈S′, O, P ′〉 from Q = 〈S, O, P 〉, such that:

R′ = R] {rx, rleak} (create 2 extra rights)

C ′ = C ∪ {cdum} with command cdum(X1, X2)
if r ∈ P (X1, X2)

rx ∈ P (X2, X2)
then enter rleak into (X1, X2)
end

S′ = S ∪ {x} (turn x into a subject)

P ′(x, x) = {rx} (rx is the right that “identifies” x)

In the derived system and configuration, x is identified by its unique right rx to
itself that is never leaked. Leaking r-to-object-x in Q is converted into leaking rleak in
Q′ by the new command cdum.

To consider a single subject the right should not be leaked to, [HRU76] proposes
a similar trick. The subject is again given a unique right to identify itself and the new
rleak will only be leaked if r is leaked to the subject. The approach can be extended to
sets of subjects (and/or objects) by giving them all a right that identifies the set.

The attentive reader may have noticed a problem with the suggested approach: it
does not detect intra-command leakage of r ! The right way to convert is to add n
duplicates of every command α in C that has an enter operation for r, n being the
number of object arguments of α. The i-th duplicate of this command should test if the
i-th object argument can be identified as x, and add the enter operation for rleak for
every operation that leaks r to this object.

3.1. Formal Protection Systems 43

C ′ = C ∪
⋃

c∈Cr
{c1 . . . cn} with

Cr being the subset of commands that enter r, and
n being the number of object arguments in c, and
ci being the i-th duplicate of c adapted in this way:
command ci(. . . , Xo1 , . . . , Xoi , . . . , Xon , . . .)
if . . .

rx ∈ P (Xoi
, Xoi

) (extra condition)
then . . .

enter r into (Xj , Xoi
)

enter rleak into (Xj , Xoi
) (extra operation)

. . .
end

Another problem remains with this approach. Because x is turned into a subject,
some of the commands in C that were not applicable in Q because of (implicit) pre-
conditions on x being a subject, can now become applicable in Q′.

The original paper ([HRU76]) gave a broad and general introduction to the formal-
ism and its most important result was the undecidability of the safety problem (next
section). The paper has left some details formally unspecified and contains more little
flaws. These flaws are not hard to detect upon a second reading of the paper. None of
them affect the main contribution of the paper.

3.1.4 Is Safety Computable?
HRU models were not devised to perform practical safety analysis, but to reason about
the computational limits of safety properties. The main result of [HRU76] is the unde-
cidability of the safety problem: there is no algorithm to decide in general (for all HRU
systems and configurations) if a certain right (on a certain object) will leak (to a certain
subject).

This result is proven by constructing a protection system that simulates an arbitrary
Turing machine such that the leakage of the right r corresponds to the Turing machine
entering a finite state, a condition that is known to be undecidable [Tur37].

Because the work of Harrison, Ruzzo, and Ullman does not consider any form of
(semantic) equivalence relation between protection systems and/or configurations, it
cannot pose the more relevant questions:

• Is there for every protection system 〈C,R〉 (and configuration 〈S, O, P 〉) a pro-
tection system 〈C ′, R′〉 (and configuration 〈S′, O′, P ′〉) for which the safety
problems are decidable, and that has the same protection results?

• Is there an algorithm to compute such a 〈C ′, R′〉 (and 〈S′, O′, P ′〉) in case one
exists?

3.1.5 Relying on Subjects in HRU Systems
We have indicated in the previous sections that protection systems are not devised
(and not fit) for practical safety analysis because of the awkward way precise safety
properties have to be defined.

This becomes even more obvious when we want to consider the influence of the
behavior of the modeled entities on the safety in such systems. Two types of behavior
can be modelled straightforward.

44 Chapter 3. Formal Systems for Safety Analysis

• Completely untrusted entities can be modelled as subjects: they will exert every
right the commands allow.

• Completely passive entities (not exerting rights or propagating rights) can be
modelled as objects: they will never have a right themselves.

To mimic the restricted influence of subjects that are relied upon to restrict their
behavior, [HRU76] proposes to simply delete the relied upon subjects from the confi-
guration. Doing so will indeed answer the question: “Can a certain right r leak without
the cooperation of the relied upon subject(s)?” but it does not allow us to ask: “What
level of cooperation would be allowed?”. It is all or nothing.

The paper also overlooks the fact that simply deleting a relied-upon subject could
enable another command that tries to create the subject but was prevented from doing
so in the original configuration because of the implicit precondition of the create
subject command.

The drastic all-or-nothing approach leaves no room to directly model more refined
restricted behavior of entities that do exert some rights in certain circumstances but not
any other rights in any other circumstances. To model more fine grained behavior we
have to build it into the commands and there is no preferred or “natural” way to do this.

3.1.6 Discussion

The undecidability of the safety problem is an important result. If we are going to
model real safety problems in a formalism that is decidable, we must choose between
the following two options:

1. Restrict our domain of interest to decidable problems and calculate their solu-
tions.

2. Keep our original domain of interest but calculate safe but approximate solutions,
never indicating safe when the actual problem can be unsafe, but possibly, due
to the approximation, resulting in a falsely unsafe estimate.

In this thesis we choose the second option. We want to be able to model a safe and
decidable approximation for every conceivable safety problem. Therefore the results
in this work apply to all kinds of safety problems. The accuracy of our model, its ability
to avoid false unsafe estimates, will be easily adaptable.

Because of its decidable nature the model will not be Turing complete. Instead,
we will give priority to its practical utility for software designers and developers to
accurately express safe approximations of the safety problems they encounter in real
software.

3.2 Take-Grant systems

In this section we introduce the Take-Grant systems as they are described in [BS79],
including the concepts that were introduced in that work to model the propagation of
de-facto authority: authority that is not tracked or reflected in the permissions of the
protection state.

3.2. Take-Grant systems 45

3.2.1 Protection Graphs

Take-Grant systems are configurations of subjects and objects, propagating, manipula-
ting, and using rights following a predefined, fixed set of rules. They are represented
as a directed graph called the “protection graph”, consisting of nodes and labeled solid
arcs. The nodes are either subjects or objects. Contrary to protection systems (Sec-
tion 3.1), objects can have rights too: they just cannot use them. We will therefore
no longer refer to them as objects but as passive subjects. We will refer to subjects as
active subjects and use the term subject for both active and passive subjects.

Rights are represented by labels on solid arcs in the graph from the subject having
the right to the subject the right can be applied to. The combination of a right with
the subject it can be applied to is called a capability. An arc labelled with n different
rights thus represents n different capabilities. Take-Grant systems use capabilities as
the atomic unit of rights manipulation. We call the origin of the arc the holder of the
capability and the end of the arc its target.

In [BS79] the authors discuss the transfer (propagation) of information as well as
of authority. Therefore they propose to consider that a subject can have two kinds of
authority:

1. The authority that is “formally recorded in the protection system”, meaning :
the authority that corresponds directly to the holder’s set of capabilities. This
authority is referred to as de-jure authority and is represented in the graph by
solid arcs labeled with one or more rights. A solid arc pointing to a subject is
called a capability as it combines a designation (to the subject) with a permission
to use that subject in a certain way.

2. The authority that is not formally recorded in the protection system. This autho-
rity is called de-facto authority and is represented in the graph by dashed arcs
that are labeled with one or more rights. It indicates that a subject is able to
reach a goal similar to the authority provided by a de-jure right. For instance
de-facto read-authority could be attained “. . . (usually in the form of a copy and
with the assistance of others), without necessarily being able to get the direct
authority to read the information.”

The actual set of de-jure and de-facto rights is not fixed but can be modeled to suit
the situation. Table 3.2 shows the rights that are used for the explanation.

Table 3.2: Rights in Take-Grant Systems.

read right to read the contents of (get data from) a subject
write right to write (provide data) to a subject
take right to get capabilities from a subject
grant right to give capabilities to a subject

In the following representation, active subjects are depicted as black nodes, passive
subjects as white nodes, and subjects in general as grey nodes. Since active subjects
can always play the role of passive subjects, we will only need black and grey nodes
to explain the rules for transfer of information and authority. Arcs representing de-jure
rights are depicted with solid lines. Arcs representing de-facto rights as dashed lines.

46 Chapter 3. Formal Systems for Safety Analysis

3.2.2 De-Jure Rules
De-jure rules govern the transfer of de-jure rights, indicated with solid arcs. They
all respect the atomic nature of capabilities when manipulating rights, as they never
dissociate a right from its target. They also respect the principle of attenuation, as
rights can be transferred only by duplicating capabilities. New capabilities are only
created when a new subject is created.

The de-jure rules are depicted graphically in figure 3.1 with their preconditions
(left) and effects (right). Labels with capital letters denote sets of rights.

take rule

grant rule

drop rule

create rule

Figure 3.1: de-jure rules

Figure 3.1 shows how rights are propagated (take and grant rules) by copying (a
subset of) the available capabilities. The preconditions always involve one black node:
the active subject that is “responsible” for the effect of the rule. Here is a short expla-
nation of what the rules do.

Take A take capability allows the owner to copy the target subject’s capabilities to
himself, whether that target subject is active or passive.

Grant A grant capability allows the owner to copy his capabilities to the target subject,
whether that subject is active or passive.

Drop Every active subject can always drop a subset of its capabilities. When the last
capability towards a subject is dropped, the arc itself is removed. No special
right is necessary for dropping but only active subjects can drop capabilities. Of
course, subjects can only drop their own capabilities.

As all propagation in take-grant systems only depends on the presence of rights
and capabilities – never on the absence of a right or a capability – dropping
rights or capabilities cannot lead to more propagation. This means that when
calculating safety properties (upper bounds to the propagation) there is no need
to consider the possible dropping of capabilities.

Create Active subjects can create new subjects (either passive or active) and thereby
get all possible capabilities to that subject.

The design of the de-jure rules makes the formalism already much more practical
for our purpose of modeling behavior for the following reasons:

3.2. Take-Grant systems 47

• The rules naturally model the behavior of programmed entities: every change to
the configuration (every rule application) is “performed” by some active subject.

• The preconditions naturally model restrictions in terms of “what a subject is able
to do” given its capabilities.

• The principle of attenuation is guaranteed by the rules: “no subject can delegate
rights (capabilities) it does not have”.

Keep in mind that this set of de-jure rules is only meant as an example set. More
elaborate rules can be modeled in the same style, refining the conditions in which de-
jure transfer of authority takes place.

3.2.3 De-Facto Rules
The effects of using take and grant capabilities are modeled by the de-jure rules for
take and grant rights. Using read and write capabilities does not result in a transfer of
de-jure authority. Nevertheless, the fact that information is propagated implies that this
information may become reachable to other entities, and thus that de-facto authority is
propagated.

The de-facto rules indicate how de-facto authority to read and write information
can propagate. They are depicted graphically in figure 3.2 with their preconditions
(left) and effects (right).

post rule

pass rule

spy rule

find rule

Figure 3.2: de-facto rules

Post An active subject (left) that can read a subject (middle) that can be written to by
a third active subject (right), has de-facto read authority to the latter.

Pass A subject (left) that can be written to by an active subject (middle) that can also
read from a third subject (right), has de-facto read authority to the latter.

Spy An active subject (left) that can read from an active subject (middle) that can read
from a third subject (right), has de-facto read authority to the latter.

Find A subject (left) that can be written to by an active subject (middle) that can at its
turn be written to by another active subject (right), has de-facto read authority to
the latter.

48 Chapter 3. Formal Systems for Safety Analysis

Keep in mind that this set of de-facto rules is only meant as an example set. More
elaborate rules can be modeled in the same style, refining the conditions in which de-
facto transfer of authority takes place.

From these de-jure and de-facto rules we make the following observations about
the relation between authority and permissions in Take-Grant systems:

1. Subjects that do not have permissions can have authority, as is shown in the pass
and find rules.

2. Subjects that do not use their permissions can still have authority, as is shown by
the same pass and find rules.

3. Subjects that do not use their permissions still enable the propagation of de-jure
and de-facto authority by allowing active subjects to use them as a communica-
tion channel for capabilities and information.

4. The authority a subject can have by using its permissions is only partially defined
by the permission itself. The other part is defined by the type of subject the
permission is applied to: active or passive.

Notice that, given the proposed set of de-jure and de-facto rules, two subgraphs
can only remain authority-separated (kept from influencing each other) as long as they
are connected only via paths that have at least two consecutive passive subjects. This
renders Take-Grant systems less practical for modeling safety problems in software
engineering than we would have hoped. For instance, to model a software entity that
can be used as a communication channel for data but not for capabilities, we would
have to model the entity as a subgraph in the Take-Grant systems.

A refinement for this situation has been proposed as “Schematic Protection Mod-
els” [San88] in which arbitrarily many (static) types of subjects can be constructed
whose reducing effects on the transfer of authority is modeled explicitly (see section
11.1.1) .

Observation 4 in the list above is very important if we want to rely on restricted
subjects to reduce the authority that unrestricted (untrusted) subjects can have. In col-
laborative systems this reduction will be complete: permissions will only provide the
authority to try to attain an effect by collaborating with the target of the capability, who
will then decide if and when the intended authority will be realized.

A detailed discussion of the relation between permissions and authority will be
given in section 3.4.

3.2.4 Safety Analysis
Safety properties in a Take-Grant configuration graph G are expressed using a predi-
cate canKnow(p,q,G). The predicate expresses that subject p can get the authority to
get information from subject q via a finite series of de-jure and/or de-facto authority
transfers.

Algorithms to check safety properties are proposed in [LS77] and [FB96]. The
tractability is due to the fact that a single generation of created subjects (just one newly
created active subject for every active subject in the initial graph) is enough to enable
the maximum propagation of capabilities and data. The details of this calculation and of
the tractability proof are omitted as they have no relevance for the further development
of the concepts and models in this thesis.

3.3. Discussion and Comparison 49

3.2.5 Safe Approximations of Information Propagation
Take-Grant systems introduced de-facto rules to analyze the propagation of informa-
tion. Because in most actual software systems untrusted entities can also use covert
channels [Lam73] to propagate information, the actual propagation of information can-
not be safely approximated in the Take-Grant model.

In the new approach we will present in Chapter 5, we will model propagation of in-
formation for a different purpose: to inform the relied-upon entities about the effects of
legal exertions of permissions their behavior depends upon. That will be safe because:

• Untrusted subjects will be modeled not to rely upon this information anyway.

For instance, in the example of figure 2.3 in section 2.2.3 UNKNOWN behavior
does not depend on any conditions.

• We rely upon the protection system in the software to make sure that the relied-
upon entities in the software cannot be convinced that they were not involved in
a legal exertion of permissions, if that was actually the case.

In the same example, the caretaker (with behavior: PROXY) is guaranteed to
receive the knowledge did.receive(X) for every subject X it can possibly
accept as an input argument when being invoked.

3.3 Discussion and Comparison
Take-Grant systems contain both interesting restrictions and useful additions to HRU.
In this section we discuss the features that are relevant for our purpose of building an
expressive formal model for the propagation of authority that can take behavior into
account.

3.3.1 Local Preconditions govern the Propagation of Authority
The de-jure and de-facto rules in Take-Grant systems involve only preconditions that
directly concern the capabilities and the authority of the subjects that are involved in
the transfer of authority:

1. Appropriate permissions should exist between the subject that delivers the autho-
rity and the subject that acquires it. At least one of them must have a capability
that targets the other one.

2. The principle of attenuation: the subject that delivers authority can only deliver
the authority that it holds itself.

We can identify the following pairs of complementary roles for the subjects:

Initiator and Responder : There is always an active subject (black node) that holds a
capability and there is always the not-necessarily-active subject that is the target
of this capability (grey node). Let us call the former the initiator of and the latter
the responder. Initiator and responder correspond to the holder and target of a
capability.

Emitter and Collector : One of the subjects provides authority to the other: the first
one we call the emitter of the authority, the other one is the collector.

50 Chapter 3. Formal Systems for Safety Analysis

In a grant or write situation the initiator is the emitter and the responder is the
collector. In a take or read situation the initiator is the collector and the responder is
the emitter. These two pairs of complementary roles allow us to model the interaction
in many actual programming languages.

For instance in a pure functional programming paradigm, access to an entity X can
be passed from entity A to entity B in exactly these two ways:

1. A invokes B with X as an input argument: A is the initiator and emitter whereas
B is the responder and collector.

2. B invokes A who returns X: B is the initiator and collector whereas A is the
responder and emitter.

Actual invocations can be composed of these atomic interactions, for instance when
A invokes B with an input argument X and B returns Y to that invocation.

The complimentary roles are relevant for many other programming paradigms too.
For instance in object oriented programming, message passing can be modeled using
the same atomic patterns of interaction, with the sender as the initiator. Even the bind-
ing of a logical variable to a value and the assignment to a mutable variable or cell can
all be modeled in this way: the variable being a “passive” entity that is ready to collect,
emit, and respond in an interaction but not to initiate an interaction itself.

We will use the terms invoker and initiator interchangeably in this thesis.

3.3.2 Modeling Authority, not just Permissions
The most important difference between the two formal systems is the fact that Take-
Grant systems detect a form of authority that does not correspond to a single permis-
sion. For instance, the spy rule shows that in a configuration where bob has read
permission to carol, alice can use her read permission to bob to the same effect
as if she would have had read permission to carol directly.

As shown in figure 3.3, when alice has no de-jure authority to read carol,
(only) bob can make the difference: when bob is passive he does not (or cannot) use
his permission to read carol and therefore alice will not have the authority to do
so either.

Figure 3.3: The behavior of bob decides if alice has read-authority to carol.

Notice that the only de-facto authority used in [BS79] is read authority but there
is no reason why de-facto authority should be restricted to the authority to access or
transfer data. All sorts of authority can propagate without propagation of permissions:
the authority to use an encryption/decryption service, to change a pixel color on the
screen, to use any kind of resource, including memory, CPU time, Internet access, all
this power can become available to a subject without the need to propagate a single per-
mission, only by relying on other subjects that do have relevant permissions to interact
in a suitable way.

Such indirect forms of authority can only be modeled in HRU systems if the HRU
protection matrix includes all effects that are relevant for authority.

3.3. Discussion and Comparison 51

3.3.3 Modeling Static Behavior

Both HRU and Take-Grant systems consider two kinds of entities. HRU differentiates
subjects from objects. Take-Grant systems differentiate between active subjects and
passive subjects. Extra (implicit) preconditions in the HRU commands make sure that
non-subject objects never get any rights. Extra preconditions in the Take-Grant rules
(the black nodes) ensure that only active subjects can use their permissions.

Both types can be used to model entities with relied-upon restricted behavior. HRU
non-subject objects can model entities with no behavior (completely uncooperative).
Take-Grant passive subjects can model entities that do not use their permissions but
always cooperate when permissions are used on them. Whereas HRU non-subject ob-
jects can never have rights, passive subjects in Take-Grant systems can get permissions
and act as a channel to pass permissions and information between two active subjects.

Schematic Protection Models [San88] extend Take-Grant systems in the a way that
allows us to express all kinds of static behavior. Section 11.1.1 discusses the relation
between KBMs and schematic protection systems.

3.3.4 Modeling Dynamic Behavior and Collaboration

The caretaker’s proxy behavior in the example of section 2.2.1 is naturally ex-
pressed as dynamic behavior: it invokes carol and emits (sendTo()) to her only
what it has collected when it was itself invoked by its clients (did.receive()).

Instead of adding more preconditions to the rules, to model how a proxy subject
interacts with its target, we will express that proxy behavior with a separate set of
behavior rules.

The PROXY behavior in figure 2.3 depends on knowledge predicates, that indicate
how it got access to the subjects, to decide if it will emit that subject to carol. By us-
ing monotonic behavior rules, we can model subject behavior as a safe and monotonic
approximation, corresponding to the actual code of a software entity.

3.3.5 Modeling n-ary relations

Whereas the permissions in most protection systems are suitably represented as binary
relations between subjects, we will need relations of higher arity to model the dynamic
behavior of the relied-upon subjects.

The dual-role interaction model of section 3.3.2 reveals this fact, as is illustrated in
figure 3.4. An initiator alice could emit dave only to bob and emit ellen only to
carol, thereby depending on her relation with (knowledge about) dave and ellen.
To express this behavior, we will use ternary predicates like :

alice:may.sendTo(bob,dave) and

alice:may.sendTo(ellen,carol)

Ternary relations, and n-ary relations in general, cannot directly be expressed in a
graph-based model like Take-Grant nor in the binary-matrix based HRU systems. Of
course, it is always possible to translate n-ary predicates to a set of binary predicates or
to represent an n-tuple of subjects as a special kind of subject with n binary relations.
Since doing so would only add unnecessary complexity to the modeling process, our
new model will simply allow predicates of arbitrary finite arity.

52 Chapter 3. Formal Systems for Safety Analysis

alice

bob caroldave ellen

invoke
& emit

invoke
& emit

Figure 3.4: Ternary relations are necessary for alice to differentiate her behavior.

3.4 Modeling the Permission - Authority Relation

The relation between permissions and authority is very important in a protection system
and should be reflected in its theoretical models. In this section we discuss different
aspects of that relation that can help us to understand if and why a theoretical model is
appropriate to safely and accurately approximate actual protection systems.

3.4.1 The Relation Permission ↔ Access

We use access here to indicate the ability to use a permission if one has that permission.

In capability systems and in their Take-Grant based models, permissions (capa-
bilities) imply access. Systems with forgeable designation mechanisms (e.g. pointer
arithmetic) also fall into this category, since they cannot prevent access. Access must
therefore be assumed in these systems.

In Take-Grant models access also implies the availability of at least one permission
and in most actual capability systems this property holds too. Some derived systems
have unforgeable designation-only capabilities that can only be used in combination
with other capabilities [KGRB02]. Their particularities and practical suitability will
not be investigated in this thesis but it will be straightforward to model such protection
systems, using the general approach we present in chapters 5 and 6.

In object-capability systems (Section 4.3) the relation permission - access is ex-
tremely simple, since there is only one permission: the permission to invoke. In such
systems access and permission are essentially identical.

A most important implication of this property is: permissions can propagate from
subject to subject as easily as access does!

Because permissions must be unforgeable, systems in which access implies per-
missions should have unforgeable access. Conversely, systems that have unforgeable
access can use access to implement (object-) capabilities.

3.4. Modeling the Permission - Authority Relation 53

3.4.2 The Relation Permission → Authority

It is common among most protection systems, that the use of permissions guarantees a
minimum of authority, e.g. to read the contents of a file.

The actual use of a read permission in a given situation may well provide more
authority, depending on the contents of the file at the time of its use: it may contain
information that is regularly copied from another file so that it also provides read-
authority to the other file.

Consider what happens if no authority is guaranteed by a permission: would that
make the permission useless? In fact, that is exactly what object-capabilities (Section
4.3, [MS03]) do: while the holder of a capability is guaranteed access to the capability’s
target, that target completely controls the authority it provides and can reduce it to zero
if necessary.

Capabilities with guaranteed authority can always be built then by designating tar-
get objects that themselves guarantee a minimum level of cooperation. For instance, a
conventional read capability to a file can be made by building a read-only-wrapper to
that file and releasing it as an object capability. Zero guaranteed authority will be useful
to implement dynamic policies that require authority-revocation and confinement.

Original Take-Grant systems cannot model capabilities that do not provide a guar-
anteed minimum of authority. A subject can drop its rights to an object one by one but
when the last right is dropped the access is dropped with it.

To respect the dynamic nature of the relation between permission and authority
in actual capability systems, we need a model that can take the authority-reducing
behavior of the subjects into account.

3.4.3 The Relation Access → Authority

When access implies permission and all permissions guarantee a minimum authority
then access implies authority. Take-Grant systems have this property but most practical
capability systems do not.

3.4.4 The Relation Permission → Delegation

Delegation of permissions can be controlled by its own specific permissions. Take-
Grant systems have take-permissions and grant-permissions to control two comple-
mentary delegation modes: the first for delegation from the responder to the initiator,
the second in the opposite direction.

Like the other permissions in Take-Grant systems, take and grant permissions im-
ply the authority to delegate.

Interestingly, object-capabilities have no separate permission to control delegation:
like all authority, the authority to delegate can only be exerted via collaboration be-
tween the holder of a capability (the initiator) and the target (the responder). The effect
of a delegation attempt is always controlled by the emitter, even if the emitter is not
the initiator. Only if the emitter cooperates (either as initiator or as responder) the
delegation is established.

The fact that object capabilities have no specific permission for delegation should
not lead to the conjecture that object capabilities allow delegation without any permis-
sions. On the contrary, the invoker must have the capability to invoke the responder
and the emitter must have the capability to invoke the entity that is being delegated.

54 Chapter 3. Formal Systems for Safety Analysis

The latter guarantees the principle of attenuation: permissions can only be delegated
by their rightful holders!

Remark As a consequence of the perception that,in unmodified capability systems
“the right to exercise access carries with it the right to grant access” [Boe84], Boebert
concludes that capabilities cannot be used to guarantee the *-property (star-property)
of multi-level-security policies.

From the reasoning in his proof we infer that Boebert assumed that write-capabilities
not only guarantee the authority to write to the target but also the authority to delegate
any other capability the holder has to the same target. In a similar way his proof de-
pends on the assumption that read-capabilities not only guarantee the authority to read
from the target but also the authority to take any other capability the target holds.

This conjecture was refuted in [MS03]. Once we have developed a formal system
to reason about the propagation of authority in the presence of subjects with restricted,
relied-upon behavior, we will formally express and analyze this problem in section
8.4.2.

Chapter 4

Capabilities

Since capabilities were conceived [DH65] there has been a line of research that inves-
tigates how holder-controlled capability propagation can be used as the main ingredi-
ent to implement secure systems [AP67, Har85, Ree96, SSF99, MSC+01, SDN+04].
These systems include both operating systems and programming language systems.

In this chapter we will first give an overview of the main concepts and principles
of such systems, and then concentrate on the safety aspect of this endeavor: how can
arbitrary safety properties be enforced by systems that depend only on holder-managed
capability propagation?

4.1 The Original Concept of Capabilities

As computers became more powerful in the sixties, and able to run several programs
and serve different users concurrently, an architectural layout was proposed by Dennis
and Van Horn [DH65] (DVH), based on a set of meta-instructions that allow processes
to run and interact in safe ways. Their proposal was not only concerned with security in
the sense of safety but also with the availability of common resources and with enabling
interaction between processes, while avoiding unwanted interference between them.

This section presents the main ideas from DVH, not only for historical interest but
mainly to derive the simpler object-capability principles from it which are presented
in [MS03]. The ideas of DVH are represented in a frame that allows us to clarify
the many claims that have been made about its model, both negative [Boe84, KL87,
Gon89, WBDF97, HKN05] and positive [MS03, Mil06b], and to investigate (the need
for) alternatives or modifications.

This section only deals with the idea of “capabilities” in that paper and does not
go into detail on the other aspects of the proposal. The paper itself is worth reading
and studying as a whole as it describes a simple but powerful and consistent set of
abstractions that address many of the problems that occur in recent software design.

DVH provide a set of consistent concepts and an initial frame for reasoning about
capability based security. We present their work in the light of current knowledge. It is
a tribute to the insight of Dennis and Van Horn how well the work stands up.

The meta-instructions we will discuss in some depth here are:

• create segment, create directory, and create entry.
These instructions create new capabilities

55

56 Chapter 4. Capabilities

• delete
The instruction to delete owned capabilities

• create sphere, grant, ungrant, and start
These are used to execute computations and processes with a limited set of ca-
pabilities.

• enter
The instruction used to start up a process, possibly owned by another principal,
within its own sphere of protection, while explicitly delegating a capability to it.

• place, link, acquire, and remove
The instructions to widely share owned capabilities.

• receive, owner, and transmit
The instructions that provide refined ways to share owned capabilities.

In particular, we will not explain the other meta-instructions, but simply assume
their general functionality is made available:

• fork, quit, join, lock, and unlock
The instructions that provide functionality for concurrency and synchronization

• private
To create variables with local scope.

• execute i/o function
To communicate with external devices

• halt and breakpoint
To signal exceptional conditions to the superior (calling) process.

• fetch status, set status, continue, stop, examine, and ungrant
The instructions for different kinds of error handling.

4.1.1 The Supervisor

Supervisor is the term used by DVH to indicate “the core of basic computer system
functions around which all computations performed by the system are constructed”.
The supervisor is responsible for :

• The allocation and the scheduling of resources

• Accounting for, and controlling the use of computational resources

• Implementing the meta instructions.

The part of the supervisor that is concerned with assuring safe cooperation among the
system’s users and processes, by mediating resources according to a desired security
policy, is referred to as the security kernel in [Ree96], and will be of most interest to us
in this chapter.

4.1. The Original Concept of Capabilities 57

4.1.2 Principals and their Processes
Principal is the general term for individual users and groups of users who have ac-
cess to the machine and are responsible for the use of their allocated resources on the
machine. Every principal will have at least one capability: its root directory (Section
4.1.8). What is more, the principal will also have ownership of this root directory.
What this means will be explained in section 4.1.9.

A process is the abstract runtime entity that executes the instructions of a certain
procedure. It is, at every moment, associated with a “state word”: the information that
must be loaded into the processor, to start or continue the execution of the process in
its current state.

4.1.3 C-lists and Spheres of Protection
The state word contains the process’s list of capabilities: its C-list. Each entry in the
C-list is a capability that combines:

• A means to designate some computing object

• The actions that the process is allowed perform on that object.

The actions are related to the sort of computing object that is pointed to, and are clas-
sified into different types of capabilities. (Sections 4.1.4 to 4.1.8).

It is possible that more than one process shares the same C-list. That is for instance
the case when one process has spawned another process using the fork meta-instruction.
The complete set of processes that share a C-list is referred to as a Computation.

The C-list defines a “Sphere of Protection” in which the computation proceeds.
There is a one-to-one correspondence between Computations, Spheres of Protection,
and C-lists. However, we will see in section 4.1.6 that a process can sometimes call
(invoke, start) another process in a different Sphere of Protection.

To use the capabilities in its C-list, a process must apply the appropriate meta-
instructions implemented and provided by the supervisor. The process can only use
capabilities from its own C-list, simply because it can only reference capabilities via
their index number in its own C-list.

There are no meta-instructions that allow a process to make changes to an existing
capability, neither to the designation nor to the allowed actions.

Types of Capabilities

4.1.4 Segment Capabilities
DVH assume that the accessible memory is addressable via words (the smallest units
of accessible memory), that are grouped into ordered lists called segments, for the
purpose of naming. A word is to be referenced by word name: a simple combination
of the index number of the segment capability and the word’s sequence number in that
segment’s list.

A segment capability designates such a segment and allows actions from any subset
of {X, R, W} except {W} and {X, W}. X indicates permission to execute, R permission
to read, and W permission to write.

Why these two particular sets are excluded is not clear from the paper. Possibly
DVH assumed that there would be no reasonable use for them.

58 Chapter 4. Capabilities

Segment capabilities can be created using the create segment meta instruction which
takes a valid set of permitted actions as input, allocates a segment (if resource alloca-
tion allows it), creates an appropriate segment capability in the computation’s C-list,
and returns the entry number of the newly created capability.

No particular meta-instructions for using segment capabilities are provided, which
may indicate that DVH considered them to be either trivial to implement by the super-
visor or not the supervisor’s responsibility.

In the paper it is implicitly clear from the context that the C-lists themselves, while
being part of a state-word and therefore being available as data to the supervisor at some
level of abstraction, are not to be kept in memory segments to which the supervisor will
create segment capabilities. Otherwise the supervisor would of course not be able to
effectively implement the necessary protection mechanisms explained in this section.

4.1.5 Inferior Sphere Capabilities

A process that is initiated with the fork instruction executes in the same sphere of
protection as its parent process (the one that gave the fork instruction). DVH provide a
way to avoid this, and start a process with no capabilities at all.1

The create sphere instruction can be used to create a fresh sphere of protection
(empty C-list). It will make the new (inferior) sphere available as an inferior sphere
capability in the C-list of the parent (superior) process.

Once the parent process has access to an inferior sphere capability, it can use the
grant instruction to add a copy of one of the capabilities in its own C-list to the inferior
C-list designated by that inferior sphere capability. The parent process can choose for
the copy to be partial, in the sense that set actions in the copied capability can be a
subset of the one in the original capability. If the capability is owned by the parent
process, the parent process can choose to grant the ownership too. Section 4.1.9 will
explain about ownership of capabilities.

When the parent process decides it has granted enough of its own capabilities in
that way, it can use the instruction start to initiate a new process in the inferior sphere
of protection. Notice that this means that the “superior” and “inferior” processes will
be in different computations (Section 4.1.2).

DVH illustrate the utility of inferior spheres when calling an untested procedure
under construction during debugging, but of course it applies in general to all situations
in which POLA is to be applied.

4.1.6 Entry Capabilities

DVH’s motivation for introducing entry capabilities is their aim to allow data abstrac-
tions and devices to be used by several processes while ensuring that these processes
remain protected from each other.

A similar concern is described as “defensive consistency” in [Mil06b], or as its
stronger variant “defensive correctness” when the commonly used abstraction can also
protect itself from a denial of service attack. If two computations A and B both make
use of a routine S and are not otherwise dependent, it must be possible to program S so
that a malfunction of A’s processes cannot cause incorrect execution of B’s procedures.

1This statement will be reviewed in section 4.2.

4.1. The Original Concept of Capabilities 59

Part of the concern is that S’s private data should not be modifiable by A or B. This
is the concern that is referred to as the need for encapsulation in software engineering.2

But S may also be designed to modify data that has to be available by its client’s
process, which means that there should be a way to for its client to add a capability to
S’s C-list.

To solve this problem DVH provide the atomic meta-instruction enter, in which the
following are combined:

• Making the necessary change to S’s C-list

• Relinquishing control to S at a proper entry point of S’s operation

• Changing the C-list-association of the running process : from the C-list of S’s
client to S’s own, modified, C-list

Entry capabilities can only be created with the create entry instruction, which takes
a word name (Section 4.1.4) as input and a positive integer to indicate where the legal
entries are situated. The instruction creates an entry capability, adds it to the C-list of
the current process, and returns its index number in the C-list.

Only the owner of the segment capability referenced by the word name is allowed
to create entry capabilities. The concept of ownership will be explained in section
4.1.9.

The enter instruction is provided for using an entry capability. It takes as input:

• The index number of the entry capability in the calling process’s C-list

• A number indicating what entry point of the called procedure is to be invoked

• The index number of the capability in the calling process’s C-list the caller wants
to make available (delegate) to the called procedure to enable it to perform its
task.

The instruction performs the three combined tasks above. On top of the delegated
capability it also adds a suspended process capability to the called process’s C-list to
enable it to relinquish control back to the caller after the computation.

To return from the call the called process uses the continue instruction which it
will give the index of its suspended process capability as input. That instruction will
return control to the caller after having deleted the suspended process capability from
the C-list. Notice that continue does not delete the delegated capability from the com-
putation’s C-list.

4.1.7 Receive Capabilities
Receive capabilities are place-holder-capabilities, created by the calling process to be
filled in by the called process. They are created by the receive instruction that takes no
input arguments, creates a receive capability, puts it in the executing process’s C-list,
and returns its index number in that C-list. The calling process is supposed to pass this
capability to the called process using the entry instruction (see above).

A receive capability can only be used by a process that has a suspended-process-
capability to the calling process that created the receive capability. Before using the

2It is commonly assumed that Dave Parnas introduced information hiding as a software design goal in
[Par72]. Apparently, DVH [DH65] already identified a good motivation for the concept in the 1960’s

60 Chapter 4. Capabilities

continue instruction the called process can use the transmit instruction to fill in the
place-holder represented by the caller’s receive-capability.

The transmit instruction takes three input arguments:

• The index in the current C-list, of the suspended-process-capability pointing to
the caller of the current process.

• The index in the current C-list, of the receive capability that was entered by the
caller of the current process.

• The index in the current C-list, of the capability that will be transmitted to the
caller of the current process.

If the receive capability and the suspended-process-capability correspond, the receive
capability in the C-list of the process that called the process that uses the transmit
instruction is replaced by the transmitted capability.

Note that receive capabilities can be passed on to other processes again via enter
capabilities.

Remark

DVH introduce receive capabilities and the transmit instruction at the very end of
the paper, when they discuss a mechanism for sharing capabilities between principals
based on the identification of the principal that requests a capability. Contrary to the
capabilities that can be transferred using the entry instruction on an entry capability, the
capabilities that can be transferred using the transmit instruction on a receive capability
must be owned (O) in the C-list of the process that uses the instruction.

The difference between the transfer of owned versus non owned capabilities will
be discussed in section 4.1.10.

4.1.8 Directory Capabilities
Directory capabilities are a means of grouping and naming capabilities in a hierarchical
way. The can be create with the create directory instruction that takes no input, creates
a directory capability, adds it to the C-list, and returns the index in the C-list.

Adding a capability to a directory is done with the place instruction, that takes as
input:

• The index of the directory capability in the C-list

• The index of the added capability in the C-list

• The name to be given to the added capability’s entry in the directory

• An indication, either P for private or F for free, that indicates the intention to
share the capability that was placed in the directory.

To use the place instruction both the directory capability and the added capability
must be owned.

Removing a capability from a directory is done with the remove instruction that
takes as input the index of the directory capability in the C-list and the name of the
entry in that directory that has to be removed from the directory. To use the place
instruction the directory capability must be owned.

4.1. The Original Concept of Capabilities 61

4.1.9 Ownership of Capabilities

An entry i in a C-list can be marked (O) for owned. This happens exactly in the fol-
lowing situations:

1. When i indicates the root directory capability of the principal on whose behalf
the supervisor initiated the current computation. Every principal has exactly one
root directory and owns this directory.

2. When i indicates a capability that was created with the create directory or create
segment instruction.

3. An entry j to a segment capability is marked (O) in the C-list and i indicates a
capability that was created with the create entry instruction using j as the segment
input for that instruction.

4.1.10 Propagation of Capabilities

We can distinguish between two ways of sharing capabilities in DVH. First there is the
enter instruction that allows a process to share (delegate) all its capabilities regardless
of ownership but only with a process or computation it has an entry capability to.
The other mechanism proposed in DVH uses directory capabilities to share owned
capabilities only.

Sharing of Owned Capabilities between Principals

DVH use directory capabilities not just for ease of naming and grouping but also to en-
able the sharing of owned capabilities between processes and principals. The intention
is to allow principals to make their data and procedures available to other principals.
There are two mechanisms to do so:

Sharing with all principals A process can make a capability available to all princi-
pals if that capability is marked (O) in its C-list. It does so by adding an entry
for the capability into its root directory and by marking that entry (F) for free.
Adding an entry into a directory is done using the place instruction which takes
four input arguments:

• The index of the a capability that will be added (must be marked (O) in the
C-list).

• A name to indicate (retrieve) that capability from the directory.

• The index of the directory capability itself (must be marked (O) in the C-
list).

• An element from {P ,F} to mark that entry in the directory. P stands for
private, F stands for free. Only free entries are shared with other principals.

Sharing with specific principals To allow principals to make their owned capabilities
available to selected principals only, DVH suggest the instruction owner that
takes as input the index of a receive capability in the current C-list and returns
the name of the principal that created the receive capability. The instruction
makes no changes to the current C-list.

62 Chapter 4. Capabilities

To share an owned capability with a specific principal, the owner will write a pur-
pose build procedure into an owned segment and place and X-capability (execu-
tion) to that segment marked as (F) (free) in its root directory, available for every
other principal via the instruction link and acquire. Every principal that wants to
use the actual capability can invoke that procedure with a receive-capability but
the owner’s procedure can use the owner instruction on the receive-capability to
check on which principal’s behalf the requesting process is running and decide
whether to transmit (return) the requested (owned) capability.

Sharing of non-Owned Capabilities via Entry Capabilities

Once a process has in its C-list an entry capability to a procedure in a segment owned
by another principal, it can use the enter instruction to delegate the capabilities in their
C-list to the process that was started by calling that procedure. The enter instruction
takes only one capability. Contrary to the intuition created by a first read of DVH, that
limitation cannot simply be circumvented by grouping several capabilities.

Here we find an indication that DVH may have designed directories to serve two
purposes that should better have been separated: the grouping of capabilities into one
capability and the sharing of owned capabilities. We are aware that we cannot make
strong claims about this, as we cannot infer anything concrete about DVH’s actual
intentions from the paper.

To understand why it may have been better to separate these aspects, it suffices to
consider the difference between propagating a segment capability using enter or instead
using the same instruction to propagate a directory capability that contains exactly that
segment capability. In the former case the segment capability does not have to be
owned while in the latter case it does. To be useful in the latter case the segment
capability also has to be marked free (F) in the directory capability. It does not seem
very useful to pass a private capability using enter this way.

4.2 Interpretation and Discussion
There is a tension between DVH’s goal to protect processes from each other’s malfunc-
tion or bad intentions, and their goal to facilitate the sharing of capabilities between
principals. Concrete: the link and acquire instructions can be used inside an inferior
sphere of protection (Section 4.1.5) to acquire the same capabilities that the superior
sphere of protection can acquire.

Since capabilities can only be named in directories, a possible interpretation of the
supervisor’s job is: he will put all capabilities he wants to enable the principal to use
into the principal’s root directory instead of directly into the C-list of the process he
starts up on behalf of that principal. In fact this means that a process running inside
an inferior sphere of protection can always undo all its limitations by using the acquire
instruction itself. Thus it is impossible for a process to exactly control (POLA) the set
of capabilities that will be available for its subprocess.

This situation is called ambient authority : processes can have authority, in this
case in the form of capabilities, that was neither explicitly given to them by their parent
process nor acquired as a result of using the authority explicitly given to them by their
parent process. This was brought to our attention by Charles Landau in a mail [Lan06]
to the cap-talk mailing list [Cap].

There are two ways to solve this flaw:

4.3. Object Capabilities 63

1. Make the acquire instruction unavailable inside all inferior spheres of protection.

2. Allow the programmer to make the acquire instruction unavailable inside a spec-
ified inferior sphere of protection, upon creation or start of the sphere.

It is possible to divide the subsequent research efforts on capabilities in two camps.
There is the camp of “believers” who concentrate on the essentials in the DVH model,
without the mechanisms for ownership-based sharing, and there is the other camp that
assumes DVH capabilities are too permissive for practical use, and who try to fix that
problem by adding modifications to the model itself.

4.2.1 Fixing ambient authority
We cannot claim with certainty that it was indeed not DVH’s intention to allow ambient
authority, but we do claim that their model makes the most sense when interpreted as
not intentionally providing ambient authority, because the inferior spheres were intro-
duced exactly to protect a process when running code it did not want to rely upon. This
is obvious from the debugging motivation given in section 4.1.5.

By avoiding the ambient authority problem inside inferior spheres of protection
only, all proposed mechanisms to share capabilities between principals can be kept in
the computation that runs in the principal’s superior sphere of protection. This com-
putation corresponds the principal’s shell process, started by the supervisor on behalf
of the principal. By default all processes started by this shell process should be ran in
their own inferior sphere of protection, to allow the principal to run untrusted code.

The capabilities that can be acquired by the main user process (shell) are then to be
considered as a fixed and static package of authority, available by “initial conditions”
(will be explained in section 4.3.2), as opposed to ambient authority. Section 4.3 shows
a simplified model that is directly derived from DVH, that takes initial conditions into
account, but has no ambient authority.

4.3 Object Capabilities
We present here the object capability model used in [MS03, Mil06b], and relate it to
the original DVH model. Object capabilities are a purified and simplified version of
capabilites. They will form the basis for the extensible formal model of chapter 5.
The main advantages of the object capability model are its simplicity and the complete
avoidance of ambient authority.

The object capability model abstracts from the actual mechanisms for storing, re-
trieving, and sharing capabilities, and only considers the abstract rules that govern the
use and propagation of capabilities. In that model we refer to computational entities
like processes, computations, objects, and devices, as subjects. If the level of granu-
larity of the subjects is coarse enough, we can use them to represent principals, more
precisely, the set of processes and computations running on behalf of a principal.

We no longer consider the concept of ownership though we will see that some rules
only apply in situations that correspond to ownership in DVH.

4.3.1 One Type of Capabilities
All capabilities designate entities of the same type: subjects. All capabilities combine
a single right with this designation: access. This implies that there is only one type of

64 Chapter 4. Capabilities

capability: the one that provides the permission to access a subject.
The access permission indicates that the holder of the capability is allowed (and

able) to use the target subject in any way possible. What exactly is possible will depend
on the target subject.

Object capabilities work like entry-capabilities in DVH. If a called process has a
segment-read-capability it can use that capability on behalf of its caller and copy the
contents using a segment-write-capability that was delegated by the caller in the same
enter call. In that case the entry capability would provide segment-read-authority to its
holder.

This is a form of collaborative authority, because it is realized by the behavior of the
holder and the target of the capability. With object capabilities every authority stems
from collaboration.

4.3.2 Capabilities Available by Initial Conditions
We assume an initial configuration exists that safely approximates the capabilities that
are available to the subjects at the start of the analysis.

Whatever mechanism was responsible for creating these initial conditions (e.g. the
supervisor), we assume that only the mechanisms described in the following sections
(Sections 4.3.3 and 4.3.4) are active from then on.

4.3.3 Acquiring Capabilities by Parenthood and Endowment
Parenthood

Subjects can create new subjects and, by the act of creation, get a capability designating
the created subject. Acquiring a capability by the act of creating a new (child) subject
is referred to as parenthood.

In capability based programming, creation corresponds directly to the instantiation
of an object or a procedure by calling a constructor method or by evaluating an expres-
sion.

A subject comes to life with no default authority, more precisely it does not by
default inherit the capabilities of the parent subject that created it. This mechanism is
not directly supported in DVH.

An entry capability representing the child could be created inside a newly created
inferior sphere of protection and communicated back to the superior sphere’s C-list
(parent). Alternatively, an entry capability representing the child could be created in
the creator’s sphere of protection, in such a way that it will immediately proceed its
own execution in a new sphere of protection.

Endowment

The parent subject can choose to share some of its capabilities with the child subject it
creates.

In memory safe programming languages, endowment can correspond to:

• The instantiation of an object or a procedure via a constructor method with an
input argument designating the endowed capability.

• The evaluation of a lambda expression in a context with free variables containing
the endowed capability.

4.3. Object Capabilities 65

In DVH, endowment corresponds to granting the endowed capabilities to the infe-
rior sphere of protection mentioned above.

4.3.4 Acquiring Capabilities by Interaction
The main credo of object capabilities is : “Only connectivity begets connectivity”. Sub-
jects can only acquire extra pre-existing capabilities by interacting with other subjects.

Every propagation involves two subjects, each of them playing a role as either
emitter or collector of the propagated capability, and each of them also playing a role as
either initiator or responder in the interaction. These two pairs of roles are independent
but all roles must be filled: either the emitter or the collector can be the initiator but
only if the other one is the responder.

The conditions for successful propagation of an object capability designating sub-
ject carol from subject alice to subject bob are:

• either:

– alice has access to carol, and

– alice has access to bob.

In that case alice plays the role of initiator-emitter and bob plays the role of
responder-collector.

• or:

– alice has access to carol, and

– bob has access to alice.

In that case bob plays the role of initiator-collector and alice plays the role of
responder-emitter.

Notice that these propagation rules are very similar to the take and grant rules in
figure 3.1 of section 3.2.2. This similarity deserves an explanation. It may seem that
the object capability model is a simplification of the Take-Grant model, without the
take and grant capabilities. However, this simplification is only part of the story.

Remember that Take-Grant models had two types of subjects: active and passive
ones, and that passive subjects (also called “objects” there) could prevent some kinds
of propagation. The object capability model transforms the static, subject-type-based
propagation rules in Take-Grant systems into dynamic, behavior based propagation by
imposing the following extra dependencies on subject behavior:

• The emitter chooses which subject will be propagated, if any.

• The initiator chooses which subject it will interact with, if any.

4.3.5 The Authority attainable by using Capabilities
The subject-type-based propagation of authority in Take-Grant systems is refined in
the object capability model. The rules that govern propagation explicitly depend on
subject behavior:

• The subject holding a capability chooses in which circumstances and to what
effect it will use the capability.

66 Chapter 4. Capabilities

• The subject designated by a capability chooses in which circumstances it will
cooperate in realizing what authority.

This allows for a tractable, behavior-based safety analysis whose accuracy depends
on the level of detail used to model the behavior of the entities.

Instead of a write-capability designating a file, we can use an object capability to a
write stream that has an object capability to a file but can be relied-upon to only ever
use that capability to write to the file and never to read from it. This gives us more
expressive power.

We can refine the write-stream instance’s behavior to write only in certain cases,
for instance when its caller can provide a special token-only capability as a proof of
trustworthiness. The use of a token capability in this example is similar to the use proof-
of-knowledge-of-a-common-secret (password, symmetric key) in encryption protocols,
to authenticate authorized users.

When refining the write-stream instance’s behavior is not an option, wrapping it
into a proxy can be an alternative. Authority revocation is a powerful example of
how “authority reducing wrappers” can be used. The wrapper (proxy) can decide to
completely stop cooperating and thus effectively revoke authority from its holders.
This is one of the examples that will be analyzed in chapter 8.

Propagation by Interaction in DVH

The enter instruction allows the initiator to delegate a capability to the process desig-
nated by an enter capability in the initiator’s C-list. If the delegated capability is an
entry-capability, then the initiator is the emitter and the responder is the collector. If
the delegated capability is a receive-capability, then the initiator is the collector and
the responder is the emitter of an entry-capability using the transmit instruction on the
delegated receive-capability..

The code being executed in the initiator’s process decides what entry capability to
use, and what entry capability to delegate. The code being executed in the emitter’s
process decides what entry capability to propagate.

The code being executed in a process decides what entry capability to use and to
what purpose. The code being executed in the called process decides what will happen
when it is called.

4.4 DVH as Object Capabilities
In section 4.3 we have systematically expressed object-capability rules and mecha-
nisms in DVH. This shows that object capabilities can be expressed in the original
capability model. To prove that the original capability model has the same nice proper-
ties as object-capabilities, we need to show the converse: how DVH can be expressed
using object-capabilities only.

The DVH paper was only a conceptual paper that introduced the idea of abstractions
for access control, based on capabilities. It is therefore not surprising that we have to
restrict or refine some mechanisms in DVH to precisely express their model using
object capabilities.

We will interpret DVH’s mechanism for sharing capabilities between principals
via directories in its restricted form, as a supervisor-controlled way to provide initial
conditions, instead of as ambient authority (Section 4.2.1). We will also remove the
concept of ownership and all related restrictions.

4.5. Restricting the use and the propagation of capabilities 67

The remaining tasks of the supervisor can be expressed directly in the object capa-
bility model.

• The segment-capabilities can be implemented as supervisor-provided object ca-
pacities that are the only ones with direct access to the segment and are relied-
upon to restrict their use of the segment corresponding the appropriate subset of
{R, W , X} permissions.

• The enter and transmit instructions can be implemented directly with object ca-
pabilities with appropriately confined behavior.

4.5 Restricting the use and the propagation of capabi-
lities

It is strongly suggested in many security papers [KL87, Gon89, WBDF97, HKN05]
that capabilities need a “modification” to enable them to impose confinement in a
straight forward way. Some propose to add holder-identification mechanisms to capa-
bilities in order to restrict the use of capabilities to rightful holders. Others add specific
permissions to control the propagation of capabilities. Most of these papers refer to
Boebert [Boe84], for a proof that the ∗-property (Section 8.4.1) cannot be imposed in
a straight forward way in capability systems, without such modifications.

This is allegedly caused by the “fact” that “the right to exercise access carries with
it the right to propagate access”, which is interpreted by Boebert as : “the permission
to exercise access carries with it the authority to propagate access”. We were not able
to find anything in the DVH paper that supports this proposition.

We assume that a confusion between permissions and authority may have lead to
this conjecture.

Section 8.3 will demonstrate the ability of capabilities to enforce several forms of
confinement, including the ∗-property. It will also show why this ability cannot be
demonstrated in models that do not, or to an inappropriate level of detail, take behavior
restrictions into account.

4.6 Capabilities compared to Access Control Lists
In this section we will clarify the difference between capabilities as explained in this
chapter and the approach based on a dedicated reference monitor to control access
permissions by checking an access control list (ACL) at runtime. The latter is more
common in current operating systems.

A first and seemingly superfluous difference is the organization of the permissions:
capabilities keep the permissions with the subject that holds the permission, whereas
most implementations of ACLs store the permissions with the target (“object”) of the
permission. If this would only be a difference in implementation, both approaches
would be conceptually equivalent.

Capabilities combine designation with access rights whereas ACLs keep these con-
cepts separated. The ACL approach therefore seems to have the advantage of promot-
ing the separation of concerns between functionality (what the programmer wants his
program to do) and security (what the system administrator wants the program not to
do).

68 Chapter 4. Capabilities

Unfortunately, it is not always appropriate or even possible to separate the concerns
of functionality and security in this way: sometimes we may want an entity to have
permission to do something for a certain purpose but not for another purpose. This
purpose cannot simply be derived from runtime information that is available to the
reference monitor, even when that information is extensive [WBDF97]. The intention
of the entity is only known to the programmer of the entity who should be able to build
the entity so that it cannot suffer a confused deputy attack.

The confused deputy attack was first described in [Har88] and is also explained in
[Spi]. It describes client entities abusing a service entity’s authority by designating an
entity (e.g. a file) to which the service entity has access rights but the client entity has
not. The service entity then assumes that its permission to access that file was delegated
by its client and uses it for the client’s purposes.

This confusion can be avoided if access permission and designation are combined
because in that case the client entity would not have been able to designate the file in
question. The service entity (deputy) is sure to use its own permissions by using its
own designations (capabilities), and to use the permissions delegated by its client, by
using the designations (capabilities) provided by its client. Section 8.1 will explore
confused deputies concept in depth.

Other important advantages of the capability approach are:

Simplicity The runtime checking of permissions is very straightforward since it suf-
fices to make capabilities unforgeable and to allow no other form of designation
to provide access. In memory safe programming languages, since references to
entities cannot be forged, the runtime system plays the role of a reference moni-
tor already.

Complete Mediation No access can be forged and escape mediation by the capability
mechanism.

Extreme POLA The principle of least authority can be applied up to the level of the
finest grained entities: procedures and objects.

Because of the dynamic nature of authority, controlling the (dynamic) behavior
of relied-upon subjects is the most appropriate way to exert authority control. It
allows us to apply POLA, not only at the level of individual subjects, but at the
level of their intentions. In contrast, most ACL based policies only control users
and resources and allow every program to run with all the authority of the user
that started it.

Small TCB The TCB (Trusted Computing Base) indicates the set of components of a
system that are completely relied upon by all other components for their safety,
and have to be implemented in a trustworthy fashion. Applying POLA conse-
quently at all levels of granularity is a sure way to shrink the TCB.

Many advantages of capabilities are explained in detail in [MTS05].
Object capabilities have the disadvantage that they cannot confine the authority

flowing between two untrusted subjects, once one of them has a capability designating
the other. That is because, in that situation, no restrictions in the behavior of any of
the subjects can be relied upon. In capability based systems the aim will always be to
prevent this situation from occurring by keeping at least one relied-upon subject inter-
positioned between both untrusted subjects to restrict the authority flow between them.
Section 8.3 gives some examples of how this goal can be achieved.

4.6. Capabilities compared to Access Control Lists 69

The fact that object capabilities have no specific permission to control the propa-
gation of capabilities or data may seem to be a reason for concern: how can we ever
make sure that two entities are kept from having a certain influence on each other,
if we cannot express that type of control as a directly enforceable permission? Does
that not complicate things, since we will have to analyze the boundaries of authority
propagation up front?

The relation between permission and authority is intricate and dynamic, and only
permissions can be directly controlled. Even if we have fine-grained permissions, an
analysis of the authority that can become available will be necessary.

This analysis can reveal where in the initial access graph relied-upon subjects need
to be inter-positioned and what the behavior restrictions of the relied-upon subjects
should be.

Part II

Main Contributions

71

Chapter 5

Knowledge Behavior Models

In this chapter we present “Knowledge Behavior Models” (KBMs), a new and practical
formal model, in which the safety problems that are of interest to software engineers
can be expressed and analyzed.

KBMs are used to express how some relied-upon components in existing software
may possibly propagate authority and then to predict how authority cannot propagate
in that software. KBMs principal advantage is in discovering how the relied-upon
restrictions in the software components will affect the predictions about the complete
software. The result is a set of realistic design requirements for the components that
have to be developed (or need to be adapted) that will guarantee that no illegal authority
can be attained in the software.

This chapter is largely self contained. However, an understanding of the concepts
introduced is Section 1.3 is required. A previous reading of the chapters 1 and 2 is
recommended to understand the contribution in its context.

Some of the new concepts introduced here will be revisited in the more practically
oriented chapter 7, using the description language SCOLL that will be introduced in
chapter 6. We refer to chapter 8 for a list of well explained, useful, and illustrated
examples of how KBMs, expressed in SCOLL, are used for safety analysis.

The Structure of this Chapter

The first section of this chapter provides a motivation for KBMs, illustrated with pro-
gramming code examples. Section 5.2 will then give a concise overview of the concepts
and mechanisms we use in our approach

Section 5.3 will introduce the basic components that constitute a KBM. Sections
5.4 will further clarify the role and the use of these components in a simple capability
based example.

Section 5.5 shows a refined version of the example to illustrate the technique of
refinement. The process of progressive refinement of a KBM is a crucial part of our
approach. Section 5.6 will present a general account of refinement.

Section 5.7 will then give the formal definitions of KBMs and of the safety prob-
lems that can be expressed using KBMs. It will also provide a formal definition of
aggregation and a formal proof that aggregation of safe models always results in a safe
model.

73

74 Chapter 5. Knowledge Behavior Models

5.1 Motivation

KBMs were developed as a synthesis of the formal models described in earlier chap-
ters, combining their desirable properties and avoiding the drawbacks that made them
impractical for expressing and analyzing the safety concerns of software engineers.

We want our formal model to serve a practical purpose: to help designers and
developers of secure software to understand the actual requirements for the software
entities they rely upon to enforce their safety goals, given a context (pattern) in which
these entities will play their role. Relying on programmed restrictions in the software
improves the expressive power of authority analysis and the effectiveness of authority
control in comparison to an approach that restricts its attention to the availability and
the propagation of permissions.

In “Robust Composition” [Mil06b] Miller compares the possible approaches to
safety analysis and concludes that our approach is preferred, because it allows the
tractable calculation of a non-trivial upper bound on eventual (reachable) authority
that becomes more accurate when behavior is modeled in greater detail. We will con-
sequently pay more attention to expressing behavior than to refining permissions.

KBMs are particularly suitable to model software that is controlled by a capability
based protection system. Capability based protection systems are relevant for software
engineers, because the implementation of such a system can be embedded in the lan-
guage runtime, as is the case for capability secure languages like E [MSC+01], Emily
[SM06], and Oz-E [SV05].

Even so, the models remain general enough to express many protection systems.
Alternative forms of permission control (via reference monitoring) can impose further
(or other) permission-based restrictions. KBMs will consequently allow us to make
formal comparisons between alternative approaches for protection systems.

To illustrate our approach, we will provide code examples in Oz-E [SV05], the
capability-secured subset of Oz [Moz03, VH04] or in Emily [SM06], a capability-
secured subset of OCaml[CMP00]. Both are multi paradigm languages, suitable to
illustrate how KBM subjects can model different kinds of software entities (objects,
modules, functions, procedures, etc.) and different mechanisms for authority propaga-
tion (e.g. invocation and message passing).

Oz has preemptive threads and logic variables, specific language constructs that
allow us to illustrate how differences in programming languages can influence KBMs.
Emily’s restrictions to OCaml guarantee that no ambient authority is attainable in the
software and thus allow us to express examples that only depend on a pure capability
based protection system.

5.1.1 A Preliminary Example

A simple code example in Oz and Emily will provide additional intuition about our
goal and motivation.

The top part of figure 5.1 shows the Oz code for a procedure AliceProc, an object
AliceObj, and two unspecified entities Bob and Carol. Below it, an equivalent situ-
ation in Emily is shown. We will refer to the entities in abstract terms as the subjects
alice, bob, and carol.

5.1. Motivation 75

Modeling the Initial Access Graph

We will assume that the runtime environment for the software does not provide am-
bient authority. That means that, upon loading the modules that will create bob and
carol, these modules get no access to other entities. In Emily, all ambient authority
has been removed from the OCaml environment, but in Oz, the programmer will have
to implement his own loader (Module Manager) to avoid ambient authority.

The loaded modules need no ambient authority to create bob and carol, but
they can (only) convey to their created entities the authority that they have themselves.
Therefore it is possible that bob has access to bob and alice has access to alice.

Furthermore, bob and alice can each have access to the module that created
them, and to other entities that may be created by the same module. We ignore these
complications for now, and assure the reader that they will be dealt with soon, in an
elegant way.

In the KBM, we will model all possible permissions between entities as actual
permissions between subjects, because we want to use the model to calculate an upper
bound to the authority that is reachable in the software.

From the code that defines alice (as a procedure or an object), we can infer that,
immediately after its execution (when alice is defined), she only has access to bob,
not to carol or to herself.

The access graph of figure 5.1 depicts the initial access permissions of the subjects.
Note that KBMs will allow us to describe the initial state of the subjects in greater
detail than is suggested in this figure. It can include all kinds of initial conditions to
model the initial state of the entities more accurately.

Behavior

Looking at the code for the entities corresponding to bob and carol, we see that they
are created from external modules. We are unable (or unwilling) to express any specific
knowledge about these modules in the model. For the purpose of authority analysis,
we must therefore assume that bob and carol will do everything they possibly can,
to break our security requirements.

Unknown (untrusted) entities, like bob and carol, will be modeled as abstract
subjects with unrestricted behavior. In graphs, we will depict the name of unknown
subjects in red, and the name of relied-upon subjects in black (see the access graph of
figure 5.1).

We will model the restrictions of relied-upon entities as the behavior of relied-
upon subjects. For that, we need to perform only a local inspection of the code of
the entities that are modeled. Conversely, to program entities that satisfy the behavior
of modeled subjects, we only have to inspect the subject’s behavior. This is crucial,
because we want to make our approach useful for programmers, during the design and
the implementation phase of their software.

For instance, by looking only at alice’s code, in either language, and in either
implementation (as object or as procedure), a programmer can derive the following
restrictions, he can rely upon:

1. alice will only accept input arguments, and not return anything to her clients
(invokers, senders of messages). In the Oz example, since Oz has logical vari-
ables that can be passed on before they are bound to a value, the programmer

76 Chapter 5. Knowledge Behavior Models

declare
Bob = {{Link ["bobModule.ozf"]}.1.makeBob}
Carol = {{Link ["carolModule.ozf"]}.1.makeCarol}

AliceProc = proc{$ Input}
{Wait Input}
{Bob Input}

end

AliceObj = {New class $
meth doSomethingWith(Input)

{Wait Input}
{Bob doSomethingElseWith(Input)}

end
meth init() skip end

end
init()}

bob, carol and the relied-upon subject alice (x 2) in Oz

let bob = BobModule.makeBob();
let carol = CarolModule.makeCarol();

let aliceProc input = ignore (bob input);

let alice = object
method doSomethingWith input =
ignore (bob doSomethingElseWith input);

bob, carol and the relied-upon subject alice (x 2) in Emily

alice

bob

carol

The initial access graph

Figure 5.1: Preliminary Example

5.2. Approach 77

made sure that the variable is bound before it is passed on in alice’s code, by
using the Wait procedure. That procedure will block the execution of the thread
until Input is bound.

2. alice will only use the access permissions that designate an entity referred to
as Bob.

3. alice will only use her permission(s) to supply (relay) the input arguments
she accepted. No return values are expected from the invocation (or from the
message send). Even if bob would return a value, alice would completely
ignore it. In the Oz example, the Wait procedure ensures that bob cannot bind
the variable Input, because logical variables can only be bound once. If bob
could bind a value to the logical variable Input, that would be equivalent to
returning a value directly to alice’s client.

In the next sections, we describe how the entities are modeled in a KBM, how their
behavior is expressed in the model, and how the protection mechanism (that controls
the use and the propagation of the permissions) will also be modeled. When all these
aspects of the software are modeled as a KBM, the programmer’s safety concerns will
be expressed.

Everything will then be ready to:

• Calculate an upper bound to the propagation of authority.

• Check if the safety concerns are guaranteed.

• Calculate the minimally restrictive (maximally permissive) adaptations to the
behavior of the relied-upon subjects that are sufficient to guarantee the safety
concerns.

5.2 Approach

In this section we give an overview of the approach we use to model software in KBMs.
For conciseness, this section contains no examples. All elements of a KBM will be
explained in greater detail in the next section, with examples referring to figure 5.1.

Preliminary Remark: Interaction From now on, all ways in which authority can
possibly propagate in the software will be called interaction, regardless of the actual
mechanism that is used and regardless of the number of entities that are involved in the
propagation of authority.

KBMs will model how software entities can interact, given the restrictions imposed
by a runtime protection system and the relied-upon restrictions that were (or will be)
programmed into the entities. They will be used for analyzing what authority can
possibly become available as the effect of these possible interactions.

78 Chapter 5. Knowledge Behavior Models

5.2.1 Safe and Tractable Approximations
Because KBMs will be used to prove safety properties in the modeled software (prove
that authority is not reachable), we must make sure the KBM is a safe and tractable
approximation of the software: all authority that is reachable in the software must be
reached in the KBM in a time polynomial in terms of the size of the KBM.

Therefore, we use the following approach, when modeling software as KBMs:

1. Choose a simple model for the interaction between the entities in the software
that corresponds naturally to the interaction model of the programming language.
In most examples we will restrict ourselves to a send-and-return interaction mo-
del. For languages that use continuations, a simpler “invoke” model, will suffice.
The latter is more primitive. A remark in section 5.3.2 will show how the send-
and-return model can be expressed using continuations.

The interaction model should cover all ways to convey authority between the
entities. For instance, if the language has shared state (e.g. cells with muta-
ble content), updating and/or reading the state should be modeled as a form of
interaction, in which the cell is involved in a collaborative but passive way.

2. Model all software entities as KBM subjects, including the ones that are created
at any stage, in any possible execution of the software. It will be possible to
model multiple software entities as a single subject.

3. Model the preconditions for, and the postconditions of successful interactions in
the interaction model. Model all conditions as predicates over the subjects (la-
beled relations). At least, all permissions used by the protection systems should
be modeled as predicates.

Beside permissions, three more types of predicates should be considered, corre-
sponding to three types of authority:

(a) The positive influence entities have on interactions.

(b) The positive influence successful interactions have on the behavior of enti-
ties.

(c) The positive influence entities exert directly on themselves, outside the in-
teraction model.

Predicates of type (a) will be called behavior predicates, the latter two types:
knowledge predicates.

less

4. Model the rules for successful interaction imposed by the protection system as
system rules. Every system rule is a set of preconditions and a set of postcon-
ditions. The pre- and postconditions consist of the predicates defined earlier.
Preconditions of a system rule can contain only permission predicates and be-
havior predicates. Postconditions of a system rule can contain only permission
predicates and knowledge predicates.

The semantics of the system rules :

• If all the permissions among the preconditions in the rule are satisfied, the
interaction is allowed.

5.2. Approach 79

• If all preconditions in the rule are satisfied, the interaction is executed.

• Executing the interaction will cause all postconditions to be satisfied.

5. Model, from what is known about the software, a safe approximation of the
dynamic influence of every software entity on its interactions as a set of behavior
rules for the subject that models the entity. Behavior rules are similar in structure
and semantics to system rules, but their preconditions contain only knowledge
predicates and their postconditions cannot contain knowledge predicates of type
(b).

The semantics of a behavior rule for a given subject :

• If all preconditions in the rule are satisfied, the behavior rule of the subject
is executed.

• Executing the behavior rule of a subject will cause all postconditions to be
satisfied.

The postconditions generated by the system rules will be the preconditions for the
behavior rules and vice versa. Because we only consider the authority increasing ef-
fects of the interactions and of the influence the entities have on the interactions, the
authority will never decrease in a KBM.

As part of the approximation strategy, KBMs neglect the authority-decreasing in-
fluence a change in behavior can have. We will provide alternative ways (Section 5.6.5)
to investigate the effects of authority-decreasing behavior changes.

The fact that all rules in a KBM are monotonic (cannot decrease authority), has
major consequences for the calculation of authority bounds in KBMs:

1. The calculation of authority in the KBM is a fix point calculation: it ends when
no interactions can add additional authority (all executable system rules have
been executed) and no entity’s influence on the interactions can make more in-
teractions possible (no behavior rules can make more system rules executable).

2. The fix point is computable in polynomial time corresponding to the size of the
KBM.

To ensure that the KBM is a tractable and safe approximation of the software, even
when the software potentially spawns infinitely many software entities, we will use a
technique called aggregation (Section 5.3.1). That will allow us to model infinitely
many software entities into a finite set of KBM subjects, while keeping the approxima-
tion safe.

Remark Note that KBMs will not only be used to prove safety properties in mod-
eled software by calculating the fix point for reachable authority. A more complex
and interesting application will use fix point calculations to find the necessary restric-
tions for the relied-upon subjects to guarantee the safety requirements and allow the
development of a secure program by respecting these restrictions.

5.2.2 Refining Insufficiently Accurate Approximations
It is trivial to construct a tractable KBM that safely models all kinds of software: use
a single subject with unrestricted behavior to model all entities. All authority will then

80 Chapter 5. Knowledge Behavior Models

be reached in the KBM. Clearly, safety and tractability are necessary, but not sufficient
to solve the practical safety problems of a software engineer.

When a safety requirement is violated in a KBM (authority was reached that should
not have been reachable), that constitutes no proof that the requirement is also violated
in the software. It only proves that it is possible to implement software that is modeled
by the KBM, in which the safety property will actually be violated.

To make our approach useful for software engineers, we will support progressive
refinement of the modeled behavior (Section 5.6). It will be relatively easy to find
out what behavior was responsible for the violation in the KBM. Then, if the software
engineer concludes that the behavior of some KBM subject was not sufficiently refined
to capture the actual restrictions of the programmed entities her security strategy relies
upon, she can refine the modeled behavior of the subjects involved, without having to
re-construct the whole KBM from scratch.

Section 5.5 gives an elaborate example of behavior refinement. Section 5.6 will
then present the general technique for refinement and discuss several applications.

5.3 The Basic Elements of KBMs
In this section we describe the parts that constitute a KBM in greater detail. The code
examples in figure 5.1 will be used to illustrate how every part of a KBM corresponds
to an aspect of the software being modeled or designed. KBMs will be used in later
sections to define safety problems.

Section 5.7 will give formal definition of KBMs as a mathematical structure and
describe its logical semantics, which will be used to derive an upper bound for the
authority that can be reached from an initial configuration. The declarative language
SCOLL, that will be introduced in chapter 6 for the purpose of describing safety prob-
lems that are relevant to software engineers, will have a logical semantics that is ex-
pressed in terms of KBMs.

KBMs consist of four parts:

Subjects : A fixed and static set of subjects that each represent a software entity or an
aggregate (set) of software entities

Predicates : A set of uniquely labeled relations, each with its own finite arity, that
model the permissions and the authority in the software.

System Rules : A set of rules that model the different types of interactions that are
possible in the software. These rules must respect the restrictions imposed by
the protection system. Creation of new entities is a special form of interaction
that, in some circumstances, can be neglected (see section 5.3.3).

Behavior Rules : A set of rules that model the dynamic influence the entities in the
software have on the interactions.

Knowledge Behavior Models (KBMs) are named after the two types of authority
that they can model:

• Knowledge is authority that represents a positive influence for which an entity is
sensitive. It models what an entity can know (or sense) about its environment at
runtime.

5.3. The Basic Elements of KBMs 81

• Behavior is authority that represents a positive influence exerted by a entity upon
the interactions.

Remark KBMs do not describe an initial configuration from which the safety ana-
lysis will start and neither do they describe requirements or expectations about the
software. These elements will be added separately, when expressing the actual safety
problems.

5.3.1 Subjects
We will use KBMs with a finite set of subjects to model the entities that are involved
in the propagation of permissions and authority. For software engineers and program-
mers, these agents are the entities in their software. In general, the entities can best be
identified by the following properties:

• Entities can have and use permissions and authority.

• Entities can interact with other entities.

• Entities can propagate permissions and authority by interacting with other enti-
ties.

• Entities can (often) create other entities.

For programs in a pure object oriented language, the object instances are the best
candidates. For procedural languages, the entities are the runtime instances of the
procedural closures. Multi paradigm languages contain both kinds of entities.

It is possible to analyze and model code at a higher level and consider modules or
components to be the entities. The examples in this thesis usually focus on objects and
procedures.

Because we want to calculate an upper bound on authority, it is crucial that all
possible entities are modeled, including the ones that will possibly be generated in all
possible executions of the software. Also, when modeling existing code, don’t forget
to consider the entities that may be hidden at first sight: loaded modules and classes, or
classes and modules that are globally available at runtime, may contain other objects
and procedures, or can themselves be entities as defined above.

In practice, the task of identifying the subjects that will model the software entities
is not that complex or cumbersome. It is simplified considerably by the fact that a single
subject can model a dynamic and potentially infinite set of entities in the software.

It is advisable to model all unknown entities together with all other unknown enti-
ties they can directly influence (access) and together with all entities they can create at
runtime as a single subject.

The relied-upon entities should be easy to spot for the programmer, as they are the
entities upon whose restricted behavior he relies to restrict the authority that will be
reachable. They too can be combined, but caution will be necessary when modeling
their behavior to make sure that the KBM remains a safe approximation of the software.

Notation

• Subjects are indicated in lowercase, e.g. alice

• Variables that range of the set of subjects are indicated in initial capital, e.g. S1.

82 Chapter 5. Knowledge Behavior Models

Aggregating Multiple Entities into a Single Subject Aggregation is a technique to
model a dynamic set of entities as a single subject, thereby making sure that:

• Individual behavior implies aggregate behavior: the conditions for the aggre-
gated subject to interact in the model are weaker than the corresponding condi-
tions to interact in the software for every entity in the set.

• Individual authority implies aggregate authority: the effects of the aggregated
subject’s interactions include the authority increasing effects of the correspond-
ing interactions of all the entities in the set.

• Aggregation of initial conditions: the initial configuration contains the aggre-
gated relations for every aggregated subject. For instance, if alex has initial
access to chris, and bill has initial access to dave, aggregating alex with
billwould give the aggregated subject initial access to both chris and dave.

These requirements will be explained further in section 5.3.4 and expressed for-
mally in section 5.7.4. Corollary 2 of theorem 1 proves that the authority that is
reachable in a KBM with aggregated subjects safely approximates (over-estimates) the
authority that would have been reachable if all entities had been modeled as separate
subjects.

For now it suffices to know that aggregation of any set of entities into a subject with
unrestricted behavior is simple and safe: adding more entities to an aggregation cannot
make the unrestricted behavior of the subject even more unrestricted. We only have to
remember to model the initial relations (e.g. access permissions) between any of these
entities and the entities that are modeled in other subjects. To model the initial access
among the aggregated entities it suffices to give the aggregated subject access to itself.

Example Figure 5.1 is already a simple example of aggregation. The set of subjects
that will model all entities in the software is: {alice, bob, carol}. These three
subjects must represent between them the complete (unbounded) set of entities in the
software, including those that can possibly be created at runtime.

The most natural (and default) aggregation strategy is to map all created entities
with their creator. Subject bob then models the entity that was immediately created
from the module “bobModule” and all entities created by it and by their descendants.

In the example we also aggregate bob with his creator, the “BobModule”, and
with all other entities that may be hidden or created by that module. Subject carol
is aggregated in a similar way. Notice in the access graph of figure 5.1 that bob and
carol each have access to themselves. It is clear from the code in the example that
subject alice does not create any entities: alice will represent herself only.

The default aggregation strategy is most useful to avoid having to model creation
at all: all subjects already aggregate all offspring of the entities they represent.

Aggregation Strategies Depending on the situation, many interesting aggregation
strategies can be considered:

1. The default aggregation strategy: model all child entities with their parent.

2. Model all entities of a similar type (with the same behavior) as a single subject.

3. Group all entities that have a certain initial permission (e.g. access to a specific
resource).

5.3. The Basic Elements of KBMs 83

4. Group all entities that were not modeled by other subjects into a remaining
subject.

5. Arbitrary grouping, as long as all possible entities are modeled.

A detailed example of a particularly useful and interesting application of aggre-
gation by subject behavior will be described in section 6.9 and analyzed in depth in
section 8.3.1.

5.3.2 Predicates and Facts
In KBMs, all permissions, authority, and behavior will be expressed using n-ary pred-
icates over the subjects. This is a direct extension of the binary protection matrix in
the HRU models (Section 3.1) and of the (also binary) graph-based representation of
permissions and authority in Take-Grant models (Section 3.2).

Technically, a predicate of arity n is the combination of a label p, with a complete
function that maps n-tuples (of subjects) to {true, false}. For an n-ary predicate with
label p the labeled n-tuples of subjects, p(s1, . . . ,sn) will be called that predicate’s
facts.

We say that a fact p(s1, . . . ,sn) is true if the n-ary predicate named p is true for
the tuple (s1, . . . ,sn) (if the tuple is in the relation defined by the predicate).

Notation

• All facts p(s1, . . . ,sn) specify a relation of the first subject in the fact, s1,
towards the other subjects s2 . . . sn. The first argument is called the base
subject.

• Predicates are presented in the same way as their facts: p(S1, . . . ,Sn), but with
capitals letters to indicate that they range over variables, not over constants.

• When appropriate, we will use an alternative notation for predicates and facts that
express subject behavior or subject knowledge (not permissions). We position
the first argument in front of the label, followed by a colon. Instead of the normal
notation b(S1, . . . ,Sn), we write: S1:b(S2, . . . ,Sn).

This notation underlines the fact that it is S1’s behavior or knowledge we are
talking about. The alternative notation is not used for permissions, because per-
missions are managed only by the protection system.

Three kinds of predicates will be used in a KBM:

1. Permission predicates : model the ways in which an entity is allowed to interact
with other entities.

2. Behavior predicates : model the ways in which an entity can influence its interac-
tions with other entities.

3. Knowledge predicates : model the ways in which an entity can be influenced.

We discuss each of these predicates using examples that correspond to figure 5.1.

84 Chapter 5. Knowledge Behavior Models

1. Permission predicates model if one entity is allowed to interact with other entities
in a certain way. In most protection systems permissions are binary and their label
corresponds to a right the first entity holds over the second entity. In memory safe
programming languages like Oz and Emily, the only permission is the permission to
access an entity and is implied by the reference to that entity that acts as a capacity,
because it is unforgeable. We will use the binary predicate labeled access to model this
permission.

In the example in figure 5.1, the initial permissions are:

• access(alice,bob)

• access(bob,bob)

• access(carol,carol)

2. Behavior predicates model how an entity will positively influence its interactions
with other entities. In the invoke-return model of our example (Figure 5.1), entities
have a few basic ways to influence the interactions that are allowed by their permis-
sions:

1. Choose the entities they will invoke.

2. When invoking an entity: choose the input argument(s) for the invocation.

3. When invoking an entity: choose if they will accept return values from the invo-
cation.

4. When being invoked, choose if they want to accept input arguments.

5. When being invoked, choose if and what values they want too return

These choices can be modeled with the following four predicates:

• may.sendTo(A,B,C) : subject A chooses to invoke subject B, and thereby
emit (propagate) subject C as an input argument of the invocation.
Alternative notation: A:may.sendTo(B,C).

• may.getFrom(A,B) : subject A chooses to invoke subject B and then accept
B’s return values form the invocation.
Alternative notation: A:may.getFrom(B).

• may.receive(B) : subject B, when being the responder to an invocation,
chooses to accept input arguments.
Alternative notation: B:may.receive().

• may.return(B,D) : subject B, when being the responder to an invocation,
chooses to emit (return) subject D to the invoker.
Alternative notation: B:may.return(D).

We used a prefix may. in all these behavior predicate labels. The motivation for
this prefix is to remind the reader of the fact that we are modeling possible behavior.
This convention is not imperative. All predicate labels can be chosen freely by the
KBM modeler.

5.3. The Basic Elements of KBMs 85

Notice that we do not model the entity’s choice to invoke an entity without provi-
ding input arguments or accepting return values. Therefore, in our example, the autho-
rity that can be conveyed by invoking an entity in that way must always be implied by
the access permissions. This is only relevant when we want to analyze the propagation
of data (Section 5.6.3).

Notice also that we did not model the entity’s choice to create new entities. In the
example of figure 5.1, we must therefore assume that all subjects, including alice, do
indeed consistently choose to create new entities. That is a crude over-approximation
of alice’s actual behavior, that could in principle make our approximation too crude
to be useful. We will skip this issue for now and return to it in section 5.4.

Remark Contrary to choices 1 to 3, choices 4 and 5 don’t require the entity to have
a permission. The invoke-return model is a special case of the simple invoke model,
using continuations. Consider that the invoker always provides an extra argument,
referencing a continuation of himself, that behaves exactly as the invoker when he will
have accepted the return value. Access to that continuation is a permission, provided
by the invoker, for the invokee to use when returning a value.

3. Knowledge predicates model the influence that is exerted upon an entity. That
influence can originate from a successful interaction in which the entity was involved,
or from the entity itself, without any interaction.

In KBMs, knowledge, like behavior, is never shared between entities. Successful
interactions may provide different knowledge to different participants in the interaction.
For instance, when alice invokes bob and gets carol as a return value, alice
knows who provided carol to her, but bob does not know to whom he returned
carol.

We distinguish two types of knowledge predicates:

(a) Knowledge about successful interaction. This type of knowledge models the
direct influence a successful interaction has on an entity, usually an entity that
played a certain role in the interaction. In our example of figure 5.1, successful
invoke-return interactions can be modeled in four predicates:

• did.sendTo(A,B,C) : subject A chose to invoke subject B with argu-
ment C and knows that it succeeded.
Alternative notation: A:did.sendTo(B,C).

• did.getFrom(A,B,D) : subject A chose to invoke subject B and to
accept B’s return values and knows that it succeeded. The returned value is
D.
Alternative notation: A:did.getFrom(B,D).

• did.receive(B,C) : subject B chose to accept input arguments when
invoked and knows that such an interaction succeeded. The accepted input
argument is C.
Alternative notation: B:did.receive(C).

• did.return(B,D) : subject B chose to return subject D and knows that
such an interaction succeeded.
Alternative notation: B:did.return(D).

In most KBMs the knowledge predicates will correspond directly to the behavior
predicates.

86 Chapter 5. Knowledge Behavior Models

We used a prefix did. in all these knowledge predicate labels. The motiva-
tion for this prefix is to remind the reader of the fact that we are modeling a
guaranteed effect of successful behavior. This convention is not imperative. All
predicate labels can be chosen freely by the KBM modeler.

(b) Private knowledge predicates. This type of knowledge is used to approximate
the internal state of a specific subject. Private knowledge is generated by the
subject itself and is not visible to any other subject (all inter-subject influence is
conveyed by interaction).

Private knowledge predicates can be used to model all kinds of relations of which
an entity keeps track. For instance, the fact that a relied-upon object stores certain
entities in a particular instance variable can be seen as a relation the object has
towards that entity.

5.3.3 System Rules
The different types of interactions that are possible in the software, are modeled in a
KBM as a set of system rules. Every system rule is a set of preconditions and a set of
postconditions.

The preconditions model the contribution of the subjects involved in the interaction
and the requirements demanded by the protection system, for the interaction to be
possible. The conditions concerning the contribution of the subjects are expressed as
behavior predicates. The conditions imposed by the protection system are modeled as
permission predicates.

The postconditions model the authority that is propagated upon successful interac-
tion. The postconditions are permission predicates and knowledge predicates.

Notation System rules are expressed as implications of the following form:

p1(S1,1,. . .,S1,ar(p1)) ∧ . . . ∧ pk(Sk,1,. . .,Sk,ar(pk))
⇒ pk+1(Sk+1,1,. . .,Sk+1,ar(pk+1)) ∧ . . . ∧ pm(Sm,1,. . .,Sm,ar(pm))

Example For our running example (Figure 5.1), we model two rules for the invoke-
return interactions: one for each direction in which the authority can propagate. Notice
that we use the alternative notation for behavior and knowledge.

sys1. access(A,B) ∧ access(A,X) ∧ A:may.sendTo(B,X)
∧ B:may.receive()
⇒ access(B,X) ∧ A:did.sendTo(B,X) ∧ B:did.receive(X)

sys2. access(A,B) ∧ access(B,Y) ∧ A:may.getFrom(B)
∧ B:may.return(Y)
⇒ access(A,Y) ∧ A:did.getFrom(B,Y) ∧ B:did.return(Y)

Rule sys1 models interaction whereby A invokes B with the argument X and B
accepts input values. The access permissions indicate that A should have access to
B and to X, before the interaction is allowed by the protection system. Successful
interaction will result in one new permission (B gets access to X) and new knowledge
communicated to A and B about the result of the interaction.

Rule sys2 models interaction whereby A invokes B and B returns Y. The access
permissions indicate that A should have access to B and B should have access to Y,

5.3. The Basic Elements of KBMs 87

before the interaction is allowed by the protection system. Successful interaction will
result in one new permission (A gets access to Y) and new knowledge communicated
to A and B about the result of the interaction.

Notice that two pairs of complementary roles can be identified for the subjects
involved in an interaction.

1. Invoker and Responder: the former invokes the latter.

2. Emitter and Collector: the former propagates access to the latter.

Each of the roles in every pair must be present in every interaction, but the combina-
tion of roles from every pair can differ: the invoker can be emitter if the responder is
collector and vice versa.

Remark Notice that these rules match the requirements for a capability system, of
sections 4.3.4 and 4.3.5:

• The emitter chooses which subject will be propagated.

• The invoker chooses which subject it will invoke.

• The invoker chooses in which circumstances and to what effect it will use its
capabilities.

• The responder chooses in which circumstances it will cooperate with the invoker
in realizing what authority.

5.3.4 Behavior Rules
Earlier, we modeled the “willingness” of an entity to cooperate in an interaction, using
predicates. That alone would allow us already to offer categories of subjects with static
behavior (like the active and passive subjects in the Take-Grant systems of section 3.2).

But, since we were looking for more expressive power, we will use behavior rules to
express the conditional willingness of an entity to cooperate in an interaction. Behavior
rules will allow us to express what it is about a programmed entity, we rely on.

Like system rules, behavior rules consist of a set of preconditions and a set of
postconditions. The preconditions are knowledge predicates that model the conditions
for the entity to be “willing to interact”.

The postconditions will consist of behavior predicates that model the way in which
the entity may interact if the preconditions are satisfied. In more expressive instances
of KBMs, the postconditions of a behavior rule can also contain private knowledge
predicates that model changes in the internal state of an entity. We will see an example
of that in section 5.4.

Behavior rules express the conditional behavior of a single subject, in terms of
predicates that refer to that subject’s authority (knowledge and behavior). Therefore,
the first element in every predicate of a behavior rule must refer to the subject whose
behavior the rule defines.

Notation Behavior rules are expressed as implications of the following form:
p1(s,S1,2,. . .,S1,ar(p1)) ∧ . . . ∧ pk(s,Sk,2,. . .,Sk,ar(pk))
⇒ pk+1(s,Sk+1,2,. . .,Sk+1,ar(pk+1)) ∧ . . . ∧ pm(s,Sm,2,. . .,Sm,ar(pm))
Notice that the first element in the predicates is now a subject (s), instead of a variable:

88 Chapter 5. Knowledge Behavior Models

it is the subject who’s behavior is expressed in that rule. In behavior rules we will
usually use the alternative notation for behavior and knowledge predicates.

Unrestricted Behavior In our running example (Figure 5.1) we identified two sub-
jects, bob and carol, about whose behavior we did not know anything for sure. To
be safe, we must assume that these subjects contribute to maximize the authority that
can be reached in the software. Therefore we model their behavior with a single rule
that has an empty set of preconditions and has all the subject’s behavior predicates in
the postconditions.

For instance, bob’s behavior will be expressed with the following single behavior
rule:

⇒ bob:may.sendTo(B,X) ∧ bob:may.getFrom(B)
∧ bob:may.receive() ∧ bob:may.return(Y)

This rule expresses that bob is willing to interact unconditionally, with all entities
in all possible ways.

If we would give every subject unrestricted behavior, only the permission predi-
cates in the system rules would remain actual restrictions. We could already calculate
a permission based bound on authority. For some applications, permissions based cal-
culation of authority bounds can suffice, but usually the calculated bound will be too
big, because the restricting influence of the relied-upon entities was not modeled.

Restricted Behavior The behavior of alice in our example (Figure 5.1), is mod-
eled by the following two rules:

1. ⇒ alice:may.receive()

2. alice:did.receive(X) ⇒ alice:may.sendTo:(bob,X)

The first rule indicates that alice is willing to accept input arguments uncondition-
ally, when given the choice. The second rule states that alice will invoke bob with
the argument X, on condition that she has received that argument X in an interaction in
which she was invoked (she was the responder).

Notice that, in the predicate on the right hand side of the second rule, not only the
first element is a subject, but so is the second: bob. That is OK, because, in figure
5.1 it is clear that alice only invokes bob. However, in general, a variable that is
referenced in the source code of a relied-upon entity, may, at different steps in differ-
ent executions, contain entities that are modeled as different subjects. Therefore, the
practice of using subjects in behavior rule predicates, other than for the first argument
of the predicate, is strongly discouraged. In SCOLL, it will be forbidden.

The alternative approach is to model alice’s relation to the subjects in the variable
Bob as a private knowledge predicate, for instance the binary predicate isBob(). The
second rule of alice’s behavior will then be expressed as:

2. alice:did.receive(X) ∧ alice:isBob(B)
⇒ alice:may.sendTo(B,X)

Later, when we model the initial configuration from which the calculation should
start, the private knowledge of alice will be initialized to: alice:isBob(bob).

5.4. A Simple Model for Object-Capabilities with Creation 89

5.4 A Simple Model for Object-Capabilities with Cre-
ation

Using a straight forward mapping of the mechanism to propagate authority in object
capabilities (Section 4.3), we will now derive a set of simple knowledge and behavior
predicates, and a set of system rules to construct a more realistic model for capabilities
that includes an explicit model for entity creation.

Table 5.1 lists the predicates we encountered in section 5.3, be presented with their
arity. We will keep the system rules for invocation-based interaction that were intro-
duced section 5.3 and only discuss the additional system rules that govern creation.

Table 5.1: Overview of the predicates introduced in section 5.3
.

predicate label with arity
behavior predicates may.sendTo/3

may.getFrom/2
may.receive/1
may.return/2

knowledge predicates did.sendTo/3
did.getFrom/3
did.receive/2
did.return/2

5.4.1 Running Example
To illustrate how we model the creation of a relied-upon entity by another relied-upon
entity, we introduce new code examples in figures 5.2 and 5.3

Figure 5.2 shows the Oz code for an object AliceObj, and two unspecified entities
Bob and Carol. Figure 5.3 shows an equivalent situation in Emily.

The Subjects and the Initial Access Graph

Again, we will assume that the runtime environment for the software does not pro-
vide ambient authority. We will aggregate the unknown entities like before, together
with the module they were created from, and with all their possible offspring. We mo-
del the remaining code as two subjects: alice, corresponding to AliceObj in Oz
(aliceObj in Emily), and proxy, corresponding to all the entities that are created
by alice.

The fact that proxy is an object in Oz, and a function in Emily, is irrelevant. In oz,
Objects can implement proxies by using the otherwise method, that handles methods
that are not explicitly implemented. Emily (Ocaml) has no similar construct. For the
purpose of analyzing the propagation of authority, these details about the interaction
mechanism are unimportant, because we consider an abstract interaction model.

We will consider the initial situation, at a stage where alice did not yet create a
proxy. The initial graph will nevertheless contain the proxy subject, to represent the
complete set of subjects. Because proxy is not yet created, it is not connected to the
other subjects in the access graph.

90 Chapter 5. Knowledge Behavior Models

declare
Bob = {{Link ["unknownModule.ozf"]}.1.makeInstance}
Carol = {{Link ["carolModule.ozf"]}.1.makeCarol}

AliceObj = {New class $
attr precious
meth init(protect: P)

{Wait P} % P must be bound
@precious = P

end
meth getPrecious($)

{Wait @precious} % must be bound
@precious

end
meth makeProxyFor(Client)

{Wait @precious} % wait for
initialization

{Wait Client} % must be bound
Target = @precious
Proxy = {New class $

meth init() skip end
meth otherwise(Method)

{Target Method}
end

end
init()}

in
{Client useProxy(Proxy)}

end
end

init(protect: Carol)}

{AliceObj makeProxyFor(Bob)}

Figure 5.2: bob, carol and the relied-upon subject alice in Oz

let bob = BobModule.makeBob();
let carol = CarolModule.makeCarol();

let aliceObj = object
val precious = carol
method getPrecious = precious
method makeProxyFor client =

let proxy input = precious input;
ignore (client#useProxy proxy)

end;

alice#makeProxyFor bob;

Figure 5.3: bob, carol and the relied-upon subject alice in Emily

5.4. A Simple Model for Object-Capabilities with Creation 91

alice

bob carol

proxy

Figure 5.4: The initial access graph

The other three subjects all have access to themselves, including alice, even if
we know from alice’s code that she does not refer to herself. In many program-
ming environments, objects can have access to themselves if they want to, by using the
pseudo variable self.

The access graph of figure 5.4 depicts the initial access permissions of the subjects.
Notice that KBMs will allow us to describe the initial state of the subjects in greater
detail than is suggested in this figure. It can include all kinds of initial conditions to
model the initial state of the entities more accurately.

For instance, in our running example, the initial conditions will also include the
facts alice:init(carol) and alice:makeProxyFor(bob) to indicate that
alice, in her initial state, not only has access to carol and bob, but also has a
specific relation to each of them, that will influence if and how alice will interact
with either of them. Since proxy does not yet “exist” in the initial configuration we
choose to start from, no initial knowledge is provided to it yet. The necessary access
and knowledge will be provided to proxy by its creator (alice).

Behavior

For the same reasons as in the previous example, the behavior of the subjects bob and
carol will be unrestricted.

The code of AliceObj is now larger and more complex. Trying to detect alice’s
behavior restrictions directly is no longer advisable, because of the possibility of errors.
It is simpler to model what alice does than what she doesn’t do: the former can be
derived from the individual methods of AliceObj.

1. the complete effect of invoking the init()method can be modeled with two
private knowledge predicates, in a single behavior rule:
alice:init(P) ⇒ alice:precious(P)

2. the effect of the getPrecious()method, is expressed in the behavior rule:
alice:precious(P) ⇒ alice:may.return(P)

3. to model the effect of makeProxyFor() we have to model subject creation. The
next sections will explain in detail how we do that, but the intuition can be given
in two simple rules:

(a) alice gets access to proxy, by the act of creation.

(b) alice can convey authority to proxy, without having to invoke one of
proxy’s methods, by providing variables in proxy’s outer scope. In

92 Chapter 5. Knowledge Behavior Models

this case, proxy is endowed with access to the variable ProxyTarget,
which is bound to the value in the attribute precious.

These are exactly the rules for parenthood and endowment in capability systems,
we saw in section 4.3.3. Anticipating the definition of the predicates we will use
for parenthood and endowment, we can express alice’s endowment behavior
as:
alice:precious(P) ∧ alice:did.create(Child)
⇒ alice:may.endow(Child,P)

The makeProxyFor() method will then convey the newly created entity to the
Client argument, after having made sure that the argument is bound. This
can be expressed with another private knowledge predicate makeProxyFor/2,
and the behavior rule:
alice:makeProxyFor(Client) ∧ alice:did.create(Child)
⇒ alice:may.sendTo(Client,Child)

The behavior for the proxy subject, representing all entities that are created by
alice, can be derived in a similar way from the individual methods of its anony-
mous class. To model proxy’s behavior it is not necessary to look outside the class
definition, not even to include the outer scope of the class definition.

1. The init() method has no effect. proxy will get its initial access and know-
ledge via endowment by its creator alice, not by invoke-return style interac-
tion.

2. The maximal effect of invoking any other method (represented by the argument
Method in the method otherwise()), can be modeled using one private know-
ledge predicate: target/2, and four behavior rules:

(a) ⇒ proxy:may.receive() : proxy accepts input variables.

(b) proxy:target(T) ∧ proxy:did.receive(X)
⇒ proxy.may.sendTo(T,X) : proxy forwards input variables to its
target.

(c) proxy:target(T) ⇒ proxy:may.getFrom(T):
proxy invokes its target and accepts the return values of that invocation.

(d) proxy:target(T) ∧ proxy:did.getFrom(T,X)
⇒ proxy:may.return(X) :
proxy returns the values that it collected by invoking its target.

Rules (c) and (d) need some explanation. When modeling proxy’s behavior
from the Oz code in figure 5.2, it may not be obvious that proxy also propagates
values from its target to its invokers. That is because of the logical variables in
Oz. The arguments of the method Method that is forwarded by proxy to its
target, can be unbound logical variables. When the target binds a logical variable,
the propagation of the value goes in the opposite direction : from proxy’s target
to its invoker.

5.4.2 Predicates for Subject Creation
Parenthood and Endowment To model creation of new entities we distinguish the
parent and child roles. We will allow a parent to pass on its access to its children

5.4. A Simple Model for Object-Capabilities with Creation 93

without the need for the child to give its consent. This model fits the mechanism in a
lexically scoped language, in which newly created (inner) closures have directly access
to the creating (outer) scope. In accordance with section 4.3.3, we call this endowment
of the child by its parent.

In many systems, including capability systems, the parent automatically gets a ref-
erence to its created child. This will be referred to as parenthood (also in Section
4.3.3).

Aggregation and the Parent-Child Relation Aggregation allows us to map all enti-
ties, the ones in the initial configuration and the ones that can possibly be created, into
a finite set of subjects in the model. When mapping the parent-child relation between
the entities onto the subjects, the hierarchical nature of the parent-child relation can be
lost. That can lead to situations where one subject is another one’s child and parent
at the same time. More often though, a subject will model a complete tree of descen-
dants. We will prove in section 5.7 that aggregation respects the safety properties: if a
more-aggregated model is safe, all less-aggregated models will be safe too.

The Pseudo Permission Predicate: child/2 Just like the set of subjects, the ag-
gregated parent-child relation between the subjects is a fixed and static part of the
KBM. That relation is expressed using the predicate child/2 and is guarded by ad-
ditional system rules. Since the static parent-child relation between the subject is an
artifact of aggregation, we will call the child/2 predicate a “pseudo permission”.

Table 5.2: The pseudo permission predicate child/2

predicate comments
child(S1,S2) subject S1 models entities that possibly create

other entities that are modeled by subject S2

Behavior Predicates Table 5.3 lists the behavior predicates for creation and endow-
ment.

The behavior predicate may.create/2 expresses the parent’s intention to create
a child. The behavior predicate may.endowWith/3 expresses the parent’s intention
to endow its created child with another entity.

Table 5.3: Behavior Predicates for Parenthood and Endowment

predicate comments
S1:may.create(S2) S1 intends to create S2

S1:may.endowWith(S2,X) Parent S1 endows its child S2 with access to X

Knowledge Predicates Table 5.4 lists the knowledge predicates for creation and en-
dowment.

94 Chapter 5. Knowledge Behavior Models

• did.create/2 informs the parent subject that creation of a child has hap-
pened.

• did.endowWith/3 informs the parent subject that it has endowed a child with
access to an entity.

• was.endowedWith/2 informs the child subject that creation it was endowed
by a parent with access to an entity. This can be useful to express that a child
entity is more collaborative in its behavior towards entities it was endowed with.

Table 5.4: Knowledge Predicates

predicate comments
S1:did.create(S2) parent S1 created S2

S1:did.endowWith(S2,X) parent S1 endowed its child S2 with X
S2:was.endowedWith(X) child S1 was endowed with X

Notice that we do not provide knowledge about the parent to the child. It is left to
the parent’s discretion, whether or not it will endow the child with access to the parent,
provide this access via invocation, or not at all.

Important Remark : The reader should always keep in mind that we model only
a safe approximation of the actual behavior of the entities, modeled as subjects. For
instance, S1:may.create(S2) actually means: what we know about (and model
from) the entities modeled by subject S1, does not exclude the possibility that at least
one of these entities creates a new subject that is modeled as subject S2.

5.4.3 System Rules for Subject creation

System rules specify when behavior is relevant and effective, and what its effects can
be. We have encountered the system rules that govern the propagation of authority via
invoke-return style interaction in section 5.3.3.

To prevent the subjects from modeling impossible creation and endowment (as op-
posed to illegal interactions prevented by the protection system) we add the following
system rule that will check the fixed parent-child relation between the subjects in the
KBM.

sys3. P:may.create(C) ∧ child(P,C)
⇒ access(P,C) ∧ p:did.Create(C)

sys4. P:did.create(C)∧ access(P,X) ∧ P:may.endowWith(C,X)
⇒ access(C,X) ∧ P:did.endowWith(C,X)
∧ C:was.endowedWith(X)

Rule sys3 models parenthood. If a subject P wants to create a subject C and there is
a pre-established parent-child relation in the KBM between P and C, this rule will give
the parent access to its child upon creation and notify the parent of the creation. The

5.4. A Simple Model for Object-Capabilities with Creation 95

child/2 predicate on the left hand side enforces the static parent-child relation be-
tween the subjects. Section 5.4.6 will show how the child/2 relation can be specified
as part of the initial configuration.

Rule sys4 models endowment. If a subject P has created a subject C, and P has
access to X and wants to endow that access to C, C will get access to X and both C and
P will be informed about the endowment. It is clear that C’s behavior has no influence,
because no behavior predicate in the left hand site of the rule contains C as its first
argument.

5.4.4 Behavior Rules for Creation
The predicates for endowment and creation can be used in the following ways by the
subjects:

• By the parent, to specify the conditions in which he intents to create a child
entity, and/or endows a created entity with access to another entity.

• By the parent, to express behavior activated by the creation or the endowment of
an entity.

• By the child, to express behavior that depends on the entities it was endowed
with.

In our running example, alice’s creation of proxies can be modeled by the fol-
lowing simple behavior rules:

1. ⇒ alice:may.create(C) : alice creates new entities

2. alice:precious(P) ⇒ alice:may.endowWith(C,P) :
alice endows her children with access to the entities that are “precious” to her.

5.4.5 The KBM of the running example
Table 5.5 gives an overview of the KBM of our running example.

5.4.6 The Initial Configuration
The analysis in a KBM starts from a configuration that describes the permissions and
initial state of the entities. These conditions can have been generated by out-of-context
mechanisms (see Section 4.3.2), but can also reflect the conditions after a partial evo-
lution from a previous configuration.

All initial conditions will be expressed as permission facts and knowledge facts.
Permission facts (and pseudo-permissions) will be used to represent the initial con-
figuration of permissions and the fixed parent-child relation between the subjects of
the KBM. Private knowledge is most useful to represent the initial internal state of a
subject in the configuration.

Non-private knowledge facts can be used to reflect the knowledge a subject has
acquired from interactions before the initial state.

In short, the initial configuration has to provide information about:

• The initial access permissions between the subject

• The aggregated parent-child relation

96 Chapter 5. Knowledge Behavior Models

Table 5.5: The KBM of the running example

subjects
relied upon unknown

alice bob
proxy carol

predicates
private

permission behavior knowledge knowledge
access/2 may.sendTo/3 did.sendTo/3 alice:
child/2 may.getFrom/2 did.getFrom/3 init/2

may.receive/1 did.receive/2 target/2
may.return/2 did.return/2 proxy:
may.create/2 did.create/2 target/2
may.endowWith/3 did.endowWith/3

was.endowedWith/2

system rules
access(A,B) ∧ access(A,X) ∧ A:may.sendTo(B,X)
∧ B:may.receive()
⇒ access(B,X) ∧ A:did.sendTo(B,X) ∧ B:did.receive(X)
access(A,B) ∧ access(B,Y) ∧ A:may.getFrom(A,B)
∧ B:may.return(Y)
⇒ access(A,Y) ∧ A:did.getFrom(B,Y) ∧ B:did.return(Y)
P:may.create(C) ∧ child(P, C)
⇒ access(P,C) ∧ P:did.create(C)
P:did.create(C)∧ access(P,X) ∧ P:may.endowWith(C,X)
⇒ access(C,X) ∧ P:did.endowWith(C,X)
∧ C:was.endowedWith(X)

behavior rules
alice:init(P) ⇒ alice:precious(P)
alice:precious(P) ⇒ alice:may.return(P)
alice:makeProxyFor(Client) ∧ alice:did.create(Child)
⇒ alice:may.sendTo(Client,Child)
⇒ alice:may.create(C)
alice:precious(P) ⇒ alice:endowWith(C,P)

⇒ proxy:may.receive()
proxy:target(T) ∧ proxy:did.receive(X)
⇒ proxy:may.sendTo(T,X)
proxy:target(T) ⇒ proxy:may.getFrom(T)
proxy:target(T) ∧ proxy:did.getFrom(T,X)
⇒ proxy:may.return(X)

⇒ bob:may.sendTo(B,X) ∧ bob:may.getFrom(B)
∧ bob:may.receive()
∧ bob:may.return(Y) ∧ bob:may.endowWith(C,X)

⇒ carol:may.sendTo(B,X) ∧ carol:may.getFrom(B)
∧ carol:may.receive()
∧ carol:may.return(Y) ∧ carol:may.endowWith(C,X)

5.4. A Simple Model for Object-Capabilities with Creation 97

• The initial state of each of the subjects: their private knowledge

• The “left-over” knowledge, of a previous model.

The initial configuration of the running example is listed in table 5.6.

Table 5.6: The initial configuration of the running example (Section 5.4.1).

permission facts access(alice,alice)
access(alice,bob)
access(alice,carol)
access(bob,bob)
access(carol,carol)

parent - child relation child(alice,proxy)
child(bob,bob)
child(carol,carol)

internal state alice:init(carol)
alice:makeProxyFor(bob)

previous evolution

5.4.7 Modeling a Proof-of-Access Tester
The KBM model we have described here is dynamic and allows developers to express
conditional behavior in the subjects, based on what can become observable to an entity
about its relations with other entities. Still, the conditional behavior may not be as
refined as we want it to be for practical safety analysis.

Suppose for instance that we that we can rely on the following knowledge about
carol, in our running example: when invoked with an input argument, carol always
checks if the received entity is identical to a predefined, passive entity that functions
as a secret token. Only when the input argument matches the secret token, carol is
willing to return her own secret. In the other case, she returns a less important, public
value.

Doing so, carol effectively authenticates her invokers, not by identifying them
(there is no need for that and she may not have access to them), but by comparing
the input argument to a shared secret. To persuade carol to return her own secret,
carol’s invokers have to prove to her that they have previous access to the shared
secret. The code for the relied-upon carol we described here, is presented in figure
5.5.

The identity comparison test can be modeled in carol’s behavior as an initial
private knowledge predicate isSecretTkn/2. In the current KBM, our best, safe, ap-
proximation is to express carol’s behavior as follows:
⇒ carol:may.receive() (1)
carol:isPublic(Y)⇒ carol:may.return(Y) (2)
carol:did.receive(X) ∧ carol:isSecretTkn(X)
⇒ carol:may.return(Y) (3)

In the initial configuration, we will add the necessary facts to let carol know
what subject represents the secret token (carol:isSecretTkn(secret)) and
what value(s) are public (carol:isPublic(public)).

98 Chapter 5. Knowledge Behavior Models

PublicValue = {NewName}
SecretToken = {NewName}

Carol = local
SecretValue = {NewName}
IsSecretToken = fun{$ Token}

Token == SecretToken
end

in {New class $
meth init() skip end
meth get(Token $)

if {IsSecretToken Token}
then [SecretValue PublicValue]
else [PublicValue]
end

end
end

init()}
end

– carol as a relied-upon proof-of-access tester in Oz-E. –

let publicValue = object end;
let secretToken = object end;

let carol = object
val secretValue = object end;
val isSecretToken

= function token
-> token = secretToken

method get token =
if isSecretToken token
then [secretValue; publicValue]
else [publicValue]

end;

– carol as a relied-upon proof-of-access tester in Emily. –

Figure 5.5: carol as a relied-upon proof-of-access tester in Oz and Emily.

5.5. Refining may.return/2 99

We did a very poor job, modeling alice’s behavior. The actual access tester,
described in the code of figure 5.5, can be relied upon to be much more restricted than
we can express in our model. The real entity can accept a token, check it, return the
secret value of the invoker that provided the secret token, and afterwards repeat the
whole thing over again.

But in our current KBM, carol will, after the first time she is invoked with the
correct secret token, return all her capabilities to all invokers, because she has no
information about the invocation context. Our KBM can safely approximate carol’s
behavior, but not accurately enough to be useful for actual safety analysis. To solve this
problem, the following section will introduce a refinement of the behavior predicates
in our KBM.

5.5 Refining may.return/2
In this section we introduce two new behavior predicates to refine the may.return/2
predicate.

The refinement takes into account that, in the the invoke-return model, authority
can propagate in both directions in the same invocation and the responder can check
the input before deciding his return behavior for that invocation. The new behavior
predicates will complement the original predicates rather than replacing them.

When refining behavior predicates, we will always make sure that the semantics
of the original predicates remain unchanged. That will allow us to reuse the original
system rules and to keep the original behavior rules for those subjects whose behavior
we do not want to refine. The effort that was put into modeling a safe KBM will not
have been in vain, should it turn out that the behavior approximation was too crude,
because refining behavior in a KBM is an incremental process.

This section will conclude with two examples of the extra expressive power that can
by gained by this particular form of refinement. In the next section we will generalize
the refinement of behavior predicates.

5.5.1 Refined Predicates
The first refined predicate for may.return/2 is may.returnFor/3. It expresses
the behavior of a responder who conditionally return a subject in the same invoca-
tion it received a certain subject in. It allows carol to express conditional responder
behavior carol:may.returnFor(X,Y) that indicates her willingness to return a
subject Y in the same invocation in which the invoker sent her at least one subject X.

The second refinement, may.returnFor0/2, is used to express the comple-
mentary behavior. B:may.returnFor0(Y) indicates the responder B’s intention
to return Y in those invocations in which the invoker emitted nothing. The importance
of this complementary refined behavior predicate will become clear in section 5.5.5.

Table 5.7 explains the new predicates and their corresponding subject knowledge
predicates.

We express the refinement relations formally in table 5.8. A complete formal ac-
count will be given in section 5.7 for the generalized strategy of refining behavior.

Note that, in table 5.8, the implications for the refined knowledge predicates point
in the direction opposite to the implications for the refined behavior predicates.

Refined behavior predicates indicate behavior that is more specific than the original
unrefined behavior. In this case, the refined behavior depends on detectable conditions

100 Chapter 5. Knowledge Behavior Models

Table 5.7: Predicates for refining responder behavior.

refined behavior predicates
predicate comments

B:may.returnFor(X,Y) B, when being the responder to an invocation
from which B can successfully receive X,
chooses to return Y to the invoker.

B:may.returnFor0(Y) B, when being the responder to an invocation
from which B can know that nothing was sent
by the invoker, chooses to return Y.

refined knowledge predicates
B:did.returnFor(X,Y) B knows that B has returned Y, in an invocation

from which B has received X.
B:did.returnFor0(Y) B knows that B has returned Y in an invocation

from which it could not receive anything.
A:did.getFromFor(B,X,Y) A knows that A has invoked B with input X,

and that, in the same invocation, B returned Y.
A:did.getFromFor0(B,Y) A knows that A has invoked B with no input

and that, in the same invocation, B returned Y.

Table 5.8: Refinement relations

Implications for refined behavior predicates
B:may.returnFor(X,Y) ⇐ B:may.return(Y)
B:may.returnFor0(Y) ⇐ B:may.return(Y)

Implications for refined knowledge predicates
B:did.returnFor(X,Y) ⇒ B:did.receive(X)

∧ B:did.return(Y)
B:did.returnFor0(Y) ⇒ B:did.return(Y)

A:did.getFromFor(B,X,Y) ⇒ A:did.sendTo(B,X)
∧ A:did.getFrom(B,Y)

A:did.getFromFor0(B,Y) ⇒ A:did.getFrom(B,Y)

5.5. Refining may.return/2 101

in the invocation. The original behavior is less specific, less conditional, and therefore
implies the more specific behavior.

If we know that an entity can sometimes interact, but we cannot specify when and
in what circumstances it will interact, we can only safely approximate its behavior by a
subject that interacts in all circumstances. But, if we know that the entity only interacts
in certain conditions, we should use the refined behavior to model that. The coarsely
defined behavior (interact in all circumstances) implies the fine grained behavior (in-
teract in special circumstances).

The new system rules will generate refined knowledge from refined behavior. The
refined knowledge is more specific than the original knowledge, just like refined be-
havior is more specific than the original behavior. The refined knowledge implies the
original knowledge for the same reason: it is more specific. If a subject knows it has
successfully interacted-in-very-special-conditions with another subject, it also knows
that it has successfully interacted to that subject.

5.5.2 Refined Rules
All four system rules defined earlier in section 5.4.3 remain valid and are still included
in the refined KBM.

We add four extra system rules to manage the refined behavior. Two new system
rules will guard the refinement implications for the behavior predicates (Table 5.8,
first part). Two other rules will guarantee the refinement relations for the knowledge
predicates (Table 5.8, second part). The former two rules are exceptional, because their
postconditions contain behavior predicates instead of knowledge predicates.

Behavior Refinement Rules

To guarantee the refinement relations for the behavior predicates, we introduce a new
type of rules: behavior refinement rules. These rules will generate more-refined beha-
vior predicates from less-refined behavior predicates to guarantee that every subject’s
behavior is automatically adapted to the refinement that was introduced.

The behavior refinement rules are identical to the first two rules in table 5.8:

ref1. S:may.return(Y)⇒ S:may.returnFor(X,Y)

ref2. S:may.return(Y)⇒ S:may.returnFor0(Y)

Refined System Rules

We do not need a new type of rules to specify the refinement relations for knowledge
predicates in table 5.8. We enforce these relations by adding two new system rules.

sys5.
A:may.sendTo(B,X) ∧ A:may.getFrom(B) ∧ access(A,X)
∧ access(A,B) ∧ B:may.receive()
∧ B:may.returnFor(X,Y) ∧ access(B,Y)
⇒ access(A,Y) ∧ access(B,X) ∧ A:did.getFromFor(B,X,Y)

∧ B:did.returnFor(X,Y) ∧ A:did.getFrom(B,Y)
∧ B:did.return(Y)

102 Chapter 5. Knowledge Behavior Models

sys6.
A:may.getFrom(B) ∧ access(A,B) ∧ B:may.returnFor0(Y)
∧ access(B,Y)
⇒ access(A,Y) ∧ A:did.getFrom(B,Y) ∧ B:did.return(Y)
∧ A:did.getFromFor0(B,Y) ∧ B:did.returnFor0(Y)

Note that the preconditions of rule sys5 imply the preconditions of rule sys1 (Sec-
tion 5.4.3), which already generates the additional knowledge that is required for the re-
finement relations in table 5.8: A:did.sendTo(B,X) and B:did.receive(X).

Subjects interacting by rule sys5 will not only get knowledge about a successful
exchange, but also about the individual parts of the exchange.

This will make sure that subjects who did not refine their behavior using the pred-
icate may.returnFor and who did not specify their behavior with behavior rules
that depend on did.returnFor or did.getFromFor knowledge, will not need
to change their behavior in the refined KBM. The behavior refinement rules will take
care of all necessary adaptations.

The conditions in rule sys5 state that:

• A must be willing to send X to B
That is because B will decide to return Y only after B has received X.

• A must be willing to get access from B when invoking B
A is the invoker and, since we model collaboration, A decides if it wants to accept
or reject return values from B.

• A must have the necessary access permissions

• B must be willing to receive access.
B cannot know what subject will be emitted by its invoker and can only decide
to return Y after it has received X.

• B must be willing to return Y to invokers that send X to B.

Rule sys6 is similar to rule sys2. It allows the responder to express return behavior
that explicitly requires that nothing was emitted to the responder in the invocation con-
text. The specific knowledge generated by that rule will allow the invoker to refine its
behavior based on what the responder returns in invocations the invoker did not send
anything.

5.5.3 Overloading Knowledge Predicates
Since the preconditions of rule sys5 imply the preconditions of rule sys1 (Section
5.4.3), we can try to simplify rule sys5 as follows:

sys5b.
B:may.returnFor(X,Y) ∧ access(B,Y) ∧ A:did.sendTo(B,X)
⇒ access(A,Y) ∧ access(B,X) ∧ A:did.getFromFor(B,X,Y)

∧ B:did.returnFor(X,Y) ∧ A:did.getFrom(B,Y)
∧ B:did.return(X)

Strictly spoken, this is not a valid system rule, because one of its preconditions
(underlined) refers to A’s knowledge, instead of to a subject’s behavior or permissions.

5.5. Refining may.return/2 103

To make the rule valid we have to overload the did.sendTo predicate to represent
both a subject’s permission and a subject’s knowledge.

In practice, rule sys5b can be a valid and efficient representation of rule sys5 in
systems that also contain rule sys1, but only when no did.sendTo knowledge is
specified in the initial configuration, as a left over knowledge from a previous evolution.

Because of the concise notation of rule sys5b, we will sometimes overload sub-
ject knowledge predicates this way, when expressing patterns of collaborating subjects
in chapters 7 and 8. We will then always make sure that the overloaded knowledge
predicate is not present in the initial configuration.

Using overloading, we can choose to turn the refinement relations for the know-
ledge predicates in table 5.8, directly into system rules. Some examples in chapter 8
will follow this approach.

5.5.4 A Proof-of-Access Tester with Exchange Behavior
With the refined rules added, the access tester alice from section 5.4.7 (Figure 5.5)
can now be expressed more precisely, using the following behavior rules:

⇒ carol:may.receive() (1)
carol:isPublic(Y) ⇒ carol:may.return(Y) (2)

carol:isSecretTkn(X) ⇒ carol:may.returnFor(X,Y) (3)

Rules (1) and (2) are identical to our first attempt in section 5.4.7 but the effect
of rule (2) is different now. The unrefined behavior predicate may.return/2 in
(2) indicates that no conditions on the invocation context are specified when return-
ing “public” capabilities. That means that public capabilities will be emitted using
may.returnFor0/2 as well as may.returnFor/3, because that is enforced by
rules ref1 and ref2. As indicated in (3), the non-public capabilities are only emitted
using may.returnFor/3.

Just like the actual access tester it models, the carol subject in our refined KBM
can now be invoked with an input argument, check it, return her own secret if the
invoker provided the secret token, and afterwards repeat the whole thing over again.

5.5.5 Proxying to an Access Tester
The refined behavior predicates of table 5.7 allow us to extend the invocation context
over more that one invocation. Suppose a proxy was interpositioned between the access
tester and his clients, and the proxy can be relied upon to forward and return the ar-
guments between the clients and the access tester, just as if it the clients would invoke
the access tester directly. Such behavior is easy to implement using a proxy pattern
[GHJV94], sometimes referred to as a transparent forwarder pattern. Thanks to the
refined predicates, our refined model is expressive enough to model it accurately.

In fact, the code in figures 5.2 and 5.3 implement exactly such a proxy. Our first
attempt at modeling that proxy, using the unrefined behavior predicates, was as follows:

⇒ proxy:may.receive() (1)
proxy:target(T) ∧ proxy:did.receive(X)
⇒ proxy:may.sendTo(T,X) (2)
proxy:target(T)⇒ proxy:may.getFrom(T) (3)
proxy:target(T) ∧ proxy:did.getFrom(T,X)
⇒ proxy:may.return(X) (4)

104 Chapter 5. Knowledge Behavior Models

Now suppose that proxy’s target is a proof-of-access tester, as described in sec-
tion 5.5.4. This model would be hopelessly inaccurate to express that we rely on
proxy, not to return the secret values proxy returned by its target (in exchange for a
secret token provided by one of proxy’s clients), indiscriminately to all its clients.

In the refined KBM, we can make sure that proxy respects its target’s choices
about what invoker should get access to the target’s secret, by modeling proxy’s be-
havior rules in way:

⇒ proxy:may.receive() (1)
proxy:target(T) ∧ proxy:did.receive(X)
⇒ proxy:may.sendTo(T,X) (2)
proxy:target(T)⇒ proxy:may.getFrom(T) (3)
proxy:target(T) ∧ proxy:did.getFromFor0(T,X)
⇒ proxy:may.returnFor0(X) (4)
proxy:target(T) ∧ proxy:did.getFromFor(T,X,Y)
⇒ proxy:may.returnFor(X,Y) (5)

Behavior rules (1) and (2) make sure that our proxy works in the forward way: it
will invoke the access tester emitting the arguments it collected as a responder. Beha-
vior rules (3) and (4) make sure that our proxy works in the backward way for those
invocations in which nothing is emitted by the invoker. Behavior rules (2),(3) and (5)
make sure that our proxy also works in the backward way for those invocations in
which something was emitted by the invoker.

Because the access tester will only return its non-public capabilities to invokers
that send the secret token in the same invocation, our proxy will receive knowledge
about these capabilities only via the did.getFromFor/4 and did.getFrom/3
predicates (rule sys5). Our proxy does not use its did.getFrom/3 knowledge, only
the more detailed did.getFromFor0/3 and did.getFromFor/4 knowledge.

The proxy pattern is a very important and widely used structural design pattern. In
[GHJV94] its intent is described as : “Provide a surrogate or placeholder for another
object to control access to it.”. It is crucial that our system can accurately model proxy
behavior. Proxies with this refined behavior will play a central role in the patterns for
revokable authority and will enable us to calculate a safe and accurate approximation of
the conditions in which revokable authority patterns can safely be used(Section 8.2.1).

5.6 More Expressive Power
Until now, we have only scratched the surface of the expressive power that KBMs
can provide. Even with the refinement introduced in section 5.5, the model still lacks
expressive power for fine grained behavior-based analysis.

In this section we will look into the most important restrictions that still remain
and investigate how these restrictions can be overcome to allow software engineers to
express more precisely, how the authority propagates in specific parts of their software.
We generalize the refinement approach of section 5.5 and propose generic solutions to
most of these restrictions.

We do not propose a single one-fits-all solution to enhance the expressive power of
KBMs. The generic solutions only show that it is possible, safe, and easy to refine a
KBM in a the specific area where more expressive power is needed. These areas will
be different for different kinds and different instances of safety problems.

5.6. More Expressive Power 105

Restricting the refinement efforts to a specific area allows the software engineer to
keep a general overview of the problem and concentrate on the parts of the relied-upon
code that need refined modeling. The safety problems we will model with KBMs are
computationally intensive. Therefore, introducing unnecessary refinement will take
more time and computation power to solve the problem.

5.6.1 Restrictions

Multiple arguments : The model has only one input and/or one output argument
per invocation. More complex invocations have to be approximated by multiple
simple invocations. This restricts the power of the model to express fine-grained
behavior.

For instance, responders may want to perform access tests similar to the one in
section 5.5.4, on tuples of entities instead of on the entities one by one (proof-
of-access to two or more shared secrets).

Modeling data : The current model has no separate way to represent data. We can
only model data as a passive subject (no collaborative behavior). Modeling data
can be useful to refine the interactions between relied-upon subjects.

Data could for instance be used to express the name of a method that is invoked
in an interaction. If we could express that a relied upon subject p only invokes
certain “safe” methods of a relied upon subject q, that would not only reduce
the access that p can gather by invoking q in the model, but indirectly also the
access that untrusted subjects can acquire in the model, by invoking p.

Context-specific behavior and knowledge: The predicates may.returnFor() and
may.returnFor0() represent behavior in the context of a single response or invo-
cation. It would greatly enhance the expressive power of our formalism, if such
context(s) could be made explicitly available to the system rules and the behavior
rules.

The developer could then model his relied-upon entities more precisely, by ex-
pressing preconditions for their interaction, based on the properties of the invo-
cation context that are visible to the invoked entities.

Non monotonic changes in behavior : Our monotonic approach does not allow
us to directly model a subject that changes its behavior in a non-monotonic way
(e.g. by using less or completely different behavior rules) when it becomes aware
of an event (knowledge).

We have strong reasons to stick to monotonic subject behavior, because it im-
proves the confidence that models are derived safely and because it makes the
safety analysis tractable. Within certain limitations, section 5.6.5 will propose a
way out of this dilemma.

Language Specific Support: Tools for semi-automated model extraction, e.g. via
abstract interpretation, should help programmers to confidently model code, pro-
grammed (or to be programmed) in the language of their choice. Such tools can
be tailored to cope with the language specific concepts that influence the way in
which authority propagates.

106 Chapter 5. Knowledge Behavior Models

For instance, the interaction model that we use in our KBMs is fit to express the
propagation of pre-existing capabilities, but may be less suitable to model autho-
rity propagation when logic variables are used. A logic variable is a placeholder
for a value (or for a whole series of values) and can be propagated by interaction,
before becoming bound to an entity or to another logic variable by unification.
With logic variables and unification, the flow of authority propagation can always
go in both ways: from invoker to responder and back.

While the design or development of language-specific tools for model extraction
are out of the scope of this thesis, we consider them to be very interesting fu-
ture work that will be crucial to attain a generalized accessibility of KBM-based
safety analysis.

5.6.2 A Generic Approach to Refinement
We introduce a general strategy to refine knowledge and behavior predicates when
needed and we investigate what kind of expressive power our model can gain that way.
An appropriate strategy for refining predicates will overcome many of the restrictions
mentioned earlier (Section 5.6.1).

We want the existing coarser predicates to keep their current semantics. Adding
refined behavior should not influence the meaning of the rules that are expressed with-
out the refined predicates. The old behavior rules should remain valid and stay a safe
approximation for the actual behavior they model. Subject rules detect knowledge and
generate behavior. More refined (specific) behavior predicates express restricted beha-
vior: willingness to interact in less general conditions. Therefore they are expected to
cause less interactions than the corresponding less refined behavior predicates. As a
consequence, a behavior predicate should imply all its refinements. We refer to this by
the slogan:

Refined behavior is less behavior.

On the other hand, refined knowledge predicates express more specific knowledge
and are therefore expected to trigger more behavior rules : both the ones that only
require general knowledge and the ones that require specific knowledge. This means
that, from the point of view of a subject, a knowledge predicate should always imply
all its generalizations. We refer to this by the slogan:

Refined knowledge is more knowledge.

The system rules generate knowledge (interaction effects) from subject behavior
and should also remain monotonic. More behavior should lead to more knowledge.

If we want to refine a subject’s behavior we can do so by having its behavior rules
generate more refined behavior predicates than before from the same knowledge, or
by generating the same behavior predicates as before from more refined knowledge
predicates. In both cases, the net effect will be: less interaction and less propagation of
authority throughout the configuration.

When modeling a proxy subject, we may want to respect and maintain the level
of refinement specified in the behavior of the proxy’s target. Therefore we must use
specialized rules that only depend on refined knowledge and generate refined behavior.

We do not need to adapt the behavior of unknown subjects, modeled for maximal
authority propagation. We only need to introduce behavior refinement rules, similar

5.6. More Expressive Power 107

to the ones presented in section 5.5.2, to make sure that the behavior of all subjects
respects the intended refinement relation: less refined behavior implies more refined
behavior.

Let us express these general ideas formally now. We will represent the refined
versions of an arbitrary predicate p of arity k using the extended predicate p′ of arity
k + 1. The extra element in the extended predicate p′ will not always be a subject, but
an element of a finite complete lattice (S,≤) in which r ≤ s indicates that s is equally
or more specific than r.

A complete lattice (P,≤) is a partial order in which all subsets have a greatest
lower bound (join) and a least upper bound (meet). The join of two elements A
and B is denoted by a t b. The join of all elements in a set A ⊆ P is denoted
by

⊔
A. The meet of two elements A and B is denoted by a u b. The meet of all

elements in a set A ⊆ P is denoted by
d

A. The top element of the lattice is
denoted > =

⊔
P =

d
φ. The bottom element is denoted ⊥ =

d
P =

⊔
φ.

A complete join semi-lattice is a partial order in which all subsets have a greatest
lower bound (join)
A join semi-lattice is a partial order in which all finite subsets have a greatest
lower bound (join)

We induce a join semi-lattice in the extra argument of the extended predicate to
express the refinement relations. The original, unrefined predicate p(S1,. . .,Sn) will
be represented in the extended predicate with the bottom element of the lattice as the
extra element: p′(S1,. . .,Sn,⊥).

Example

To illustrate the approach, we will express the refinement of may.return/2, intro-
duced in section 5.5 using the lattice: ({⊥, nil} ∪ {subjects},≤).

The extra element nil will indicate “no subject” and will express the predicates
may.returnFor0/2, did.returnFor0/2, and did.getFromFor0/2 in ta-
ble 5.7.

To express the refined predicates may.returnFor/3, did.returnFor/3,
and did.getFromFor/4 the extra element of the extended predicate will be a sub-
ject. The predicates may.return/2, did.return/2, and did.getFrom/3will
be expressed using ⊥ as the extra element in the extended predicate.

In other words, the element nil expresses the requirement that no subject is emitted
by the invoker in the same invocation in which an element is emitted by the responder.
It differs from ⊥, which indicates that there is no requirement at all about the elements
emitted by the invoker in that invocation. The presence of a subject means that at least
one entity was emitted by the invoker, in the invocation.

Formally, our join semi-lattice is (S ′,≤) where :

S ′ is the set of subjects S, extended with {⊥, nil}, and

∀x, y ∈ S ′ : x ≤ y ⇔ x = ⊥ or x = y.

We can now express the predicates introduced in section 5.5, using the extended
predicates shown in table 5.9.

To express the refinement relations between the predicates in terms of this lattice,
we extend the specialization partial order from S ′ to the set P of grounded predicates

108 Chapter 5. Knowledge Behavior Models

Table 5.9: Refined behavior using a refinement semi-lattice

predicate refinement lattice
S:may.return(Y) S:may.return′(Y,⊥)
S:may.returnFor(X,Y) S:may.return′(Y,X)
S:may.returnFor0(Y) may.return′(S,Y,nil)

S:did.return(Y) S:did.return′(Y,⊥)
S1:did.getFrom(S2,Y) S1:did.getFrom′(S2,Y,⊥)
S:did.returnFor(X,Y) S:did.return′(Y,X)
S1:did.getFromFor(S2,X,Y) S1:did.return′(S2,Y,X)
S:did.returnFor0(Y) S:did.return′(Y,nil)
S1:did.getFromFor0(S2,Y) S1:did.getFrom′(S2,Y,nil)

(facts) over S, with labels from a finite set L and arities decided by a function A : L →
N.

The partial order (P,≤), is defined as:

P = {p(x1, . . . , xn)|p ∈ L, n = A(p),∀1 ≤ i ≤ n : xn ∈ S ′}

∀p(x1, . . . , xn), q(y1, . . . , ym) ∈ P :
p(x1, . . . , xn) ≤ q(y1, . . . , ym) ⇔ p = q, n = m, and ∀1 ≤ i ≤ n : xi ≤ yi in
(S ′,≤)

In the partial order (P,≤), all the refinement relations between the predicates
shown in table 5.8 can now be expressed generically as is shown in table 5.10. We
will adorn variables with a prime sign (e.g. X ′) to indicate that they range over the
extended lattice set, rather than (only) over the set of subjects.

Table 5.10: Refinement relations in the semi-lattice of facts

type order condition refinement relation
behavior b(X1, . . . , X

′
n) ≤ b(Y1, . . . , Y

′
n) b(X1, . . . , X

′
n) ⇒ b(Y1, . . . , Y

′
n)

knowledge k(X1, . . . , X
′
n) ≥ k(Y1, . . . , Y

′
n) k(X1, . . . , X

′
n) ⇒ k(Y1, . . . , Y

′
n)

If p(X1, . . . , Xn) ≤ q(Y1, . . . , Yn), then q(Y1, . . . , Yn) will cause less interaction
if P is a behavior predicate and more interaction if P is a knowledge predicate.

Remark Notice that (P,≤) will most likely not be a semi-lattice. That is OK be-
cause we only need a partial order to deduce the refinement relations between the pred-
icates. However, if all predicates would be constructed as refinements, starting from a
single predicate p() with arity 0, then (P,≤) would be a complete semi-lattice, with
p(⊥, . . . ,⊥) as its bottom element.

Generalization of Lattice Based KBM Refinement

Behavior and knowledge predicates, extended for the purpose of refinement, can re-
place their original form by using the bottom element ⊥ of a join semi-lattice. This

5.6. More Expressive Power 109

semi-lattice will naturally induce a partial order among the set of extended facts.
The refinement relations between the behavior facts will deduce more specific be-

havior facts from less specific ones in the induced partial order. The refinement rela-
tions between the knowledge facts will deduce more specific knowledge facts from less
specific ones in the induced partial order.

The original predicates in the system and behavior rules can, but don’t necessa-
rily have to, be replaced by their extended form using the ⊥ element, as long as its
semantics is clear. Alternatively, new labels can be used (e.g may.returnFor,
may.returnFor0) for the refined predicates.

In the examples, we used a join semi-lattice on the set of subjects, extended with⊥
and nil, but in general, the semi-lattice can have a completely different nature. In the
remainder of this section, we will discuss applications of KBM refinement that make
use of different lattices.

Consecutive refinements can use different semi-lattices to express the refinement
relations. These semi-lattices can always be combined, by taking their lattice product.
The product of a set of lattices is defined as the set of tuples of elements, one of each
of the lattices, with the partial order defined per element in the tuple.

(P,≤P)× (Q,≤Q)
= (P ×Q,≤P×Q) : (p1, q1) ≤P×Q (p2, q2) ⇔ p1 ≤P p2 ∧ q1 ≤Q q2

The overall effect on the partial order between the facts is defined by this product
semi-lattice:

p(X ′
1, . . . , X

′
n) ≤ q(Y ′

1 , . . . , Y ′
n)⇔ ∀1 ≤ i ≤ n : X ′

i ≤ Y ′
i

The introduction of a semi-lattice that extends the set of subjects in a KBM is only
one way to impose a partial order on the predicates. The semi-lattice set does not have
to be a superset of the subjects.

Remark When introducing refinements, we have to be careful not to model refined
behavior that depends on conditions that cannot be tested by the entities whose behavior
we model. The refinements introduced until now were OK, because in our interaction
model the number of input arguments in an invocation can be detected by the responder.

5.6.3 Adding data

If we can propagate data together with subjects, we will be able to refine behavior,
based on the data that is passed during collaboration. Such data can represent input
data arguments and output data arguments. Data can also be used to model the name
of a message.

A data refinement semi-lattice can take several forms, depending on what purpose
the data has to model. Figure 5.6 shows some examples of such data semi-lattices.

A linear order can be used to indicate the number of arguments (input arguments,
output arguments) of a procedure or a method. A flat semi-lattice can also model
the name of the message or procedure. A flat semi-lattice was used to refine the
may.return/2 behavior predicate in section 5.6.2, using subjects, nil and ⊥, instead
of data.

110 Chapter 5. Knowledge Behavior Models

(1) (2) (3) (4)
linear order flat semi-lattice hierarchy subset lattice

Figure 5.6: Examples of data lattices

A type hierarchy will resemble the structure of the third example in figure 5.6 and
can be modeled as an hierarchical semi-lattice. Method signatures in statically typed
languages can be completely expressed with appropriate combinations of (2) and (3).
In dynamically typed languages a similar type hierarchy can be used to model relied-
upon behavior restrictions in the use of types and/or certified (branded) entities.

Sets of independent Boolean (or binary) properties of the message and/or its argu-
ment will form a lattice similar to (4).

Note that we added a separate ⊥ node to the hierarchy and the subset lattices, to
draw attention to the fact that the common supertype in (3) and the empty set in (4) do
not necessarily coincide with⊥. An element representing the supertype (e.g. “Object”)
may represent the requirement of an argument of any type, while ⊥ is reserved to
represent the absence of a requirement. Likewise, the empty subset can express the
requirement of a data argument, with not further requirements about the represented
properties.

Another useful and simple lattice is the singleton {⊥}. It can be used to implement
a trivial refinement, which allows us to generalize the presence of a semi-lattice in all
KBMs.

5.6.4 Multiple Arguments
To express the propagation of multiple capabilities in a single invocation, we can apply
the refinement strategy based on join semi-lattices proposed earlier in this chapter. The
behavior predicates can be extended with as many arguments as necessary to express
relied-upon restrictions about the extra arguments to be emitted and/or collected in the
same invocation.

In combination with the data refinement strategies of section 5.6.3 to model the
method name or procedure name, modeling multiple arguments allows us to express
restrictions that very precisely match the actual invocations in the code.

5.6.5 Non Monotonic Changes
Instead of directly providing support to model a decrease in an entity’s willingness
to interact, we propose to model the entity with decreasing behavior as two separate

5.7. Formal Definitions and Proofs 111

subjects. One subject models the behavior before the change, the other one after the
change. The behavior rules in the latter part of the decomposed subject will all in-
clude the precondition that models the entity’s awareness that the behavior change was
reached.

The other subjects do not need to be split up. However, the initial conditions must
be carefully adapted to make sure that all subjects have access to both parts of the
decomposed subject or to neither of them. In general, no initial conditions should
differentiate between both parts of the decomposed subject.

The analysis can then show the difference in authority that will be available to both
versions of the subject, reflecting the difference in maximally attainable authority by
the subject, before and after its behavior decrease. Most interestingly, the difference in
authority that can be provided directly by both versions of the subject, can be derived
from the knowledge about successful interaction that became available to both parts of
the decomposed subject .

Finding the difference in authority that can be made available indirectly by both
versions of the subject will be very interesting future work and can be based on the
authority flow analysis that is presented in chapter 9.

5.6.6 Behavior and Knowledge Inheritance
Until now, we only considered a refinement partial order on the extended arguments of
the predicates, never on the arguments that indicate a subject whose behavior will be
considered or whose knowledge will be influenced by a system rule.

Introducing a partial order between the subjects themselves would allow us to ex-
press behavior and/or knowledge inheritance between subjects (instances). That would
open possibilities to consider other forms of aggregation, in which :

• Every knowledge available to a subject implies that this knowledge is also avail-
able to its less specialized versions.

• Every knowledge about a subject implies the same knowledge about its less spe-
cialized versions.

• Every behavior of a subject implies that its specialized versions also have this
behavior.

• A subject carol’s behavior regarding another subject bob implies that carol
also has this behavior regarding bob’s specialized versions

Knowledge inheritance in particular, may have interesting applications for non-
monotonic behavior. In the approach of section 5.6.5, the subject “lower” in the spe-
cialization order could represent the version of the entity after the behavior change.
This line of thought will not be further explored in this thesis, but is left as future work.

5.7 Formal Definitions and Proofs
In this section we develop KBMs as a monotonic predicate logic. Safety problems will
be expressed as predicates in this logic. The intention is to provide a proof-theoretical
base for reachable authority. The logical semantics will also be used to prove that the
technique of aggregation results in safe approximations: the safety properties that are
guaranteed in an aggregated model are valid for the non-aggregated model.

112 Chapter 5. Knowledge Behavior Models

This result allows us to safely approximate problems with an unbounded number
of entities, e.g. created at runtime, using a finite KBM with a fixed set of subjects.
A safety property, guaranteed (proven) in this KBM for an aggregated subject X, is
automatically valid for every entity that was modeled as X.

5.7.1 Knowledge Behavior Models

We define Knowledge Behavior Models as tuples that contain all the necessary ingredi-
ents to logically derive a behavior-based maximal bound to authority. Remember that
this is actually an upper bound to the authority of which we cannot prove that it is not
reachable.

These ingredients are:

1. A set of subjects

2. Three disjunct sets of predicate variables to indicate permissions, behavior and
knowledge

3. Two finite sets of universally quantified implications, to:

(a) reflect the possibilities for propagation of authority, offered by the interac-
tion model and allowed by the protection system (the system rules), and

(b) reflect the monotonically approximated influence of the subjects on the pro-
pagation of authority (the behavior rules).

We will use this definition eventually to formally define the safety problems that
can be expressed in SCOLL.

Definition 9 (KBM). Knowledge Behavior Model :
A KBM is a tuple 〈S, Pp, Pb, Pk, V, Rs, Rb〉 such that:
S is a set of subjects.
Pp, Pb and Pk are disjunct sets {p, q, . . .} of predicate variables, each with finite arity
ar(p) > 0.
V is an enumerable set of variables, each ranging over the set of subjects.
Rs is a sets of universally quantified formulas called rules of the form:

∀X, Y . . . : p1(X1,1, . . . , X1,ar(p1)) ∧ . . . ∧ pn(X1,n, . . . , Xn,ar(pn))
→ q(Xn+1,1, . . . , Xn+1,ar(q))

with n ≥ 0,
pi ∈ Pp ∪ Pb and q ∈ Pp ∪ Pk

Xi,j ∈ V
and all variables are universally quantified.

Rb is a sets of universally quantified formulas called rules of the form:
∀X, Y . . . : p1(X1,1, . . . , X1,ar(p1)) ∧ . . . ∧ pn(X1,n, . . . , Xn,ar(pn))

→ q(Xn+1,1, . . . , Xn+1,ar(q))
with n ≥ 0,

pi ∈ Pk and q ∈ Pb ∪ Pk

Xi,j ∈ V ∪ S with Xi,j ∈ S ⇔ i = 1 and X1,j = X1,j+1

and all variables are universally quantified.
A KBM is finite if S, Pp, Pb, Pk, Rs, and Rb are finite.

5.7. Formal Definitions and Proofs 113

Notations

The distinction between permissions, behavior, and knowledge is crucial to our ap-
proach when modeling software. However, for our logical semantics these distinctions
are irrelevant. We will therefore usually denote a KBM in its shorter form as a tuple
〈S, P, V,R〉 such that: P = Pp ∪ Pb ∪ Pk and K = Ks ∪Kb.

Outside the context of a KBM G = 〈S, P, V,R〉, we will denote S as SG, P as PG,
V as VG, and R as RG.

Definition 10. The logical language of a KBM
A KBM G = 〈S, P, V,R〉 defines a logical language LG to reason about the subjects in
S:

• the terms of LG are symbols that uniquely name:

– the subjects in S

– the variables in V

• the well formed formulas of LG are recursively defined as:

– atomic formulas: p(t1, . . . , tar(p)) where p ∈ P and all ti are terms in LG.

– negations: ¬F , where F is a well formed formula.

– conjunctions: F1 ∧ F2, where F1 and F2 are well formed formulas.

– disjunctions: F1 ∨ F2, where F1 and F2 are well formed formulas.

– implications: F1 → F2, where F1 and F2 are well formed formulas.

– universal quantifications: ∀X1, X2, . . . : F , where Xi ∈ V and F is a well
formed formula.

– existential quantifications: ∃X1, X2, . . . : F , where Xi ∈ V and F is a
well formed formula.

– nothing else.

Clearly the rules in R all correspond to well formed formulas. When convenient,
we will reuse R to denote this set of formulas. All formulas in R are closed: because
of the universal quantification, no variable is free in any of the formulas. This means
that they are sentences in LG.

A logical language will allow us to prove or disprove sentences, given a set of
sentences of which the truth is stated (a theory). Our theories will include the system
rules and behavior rules in R , but also a set of ground atomic formulas (predicates
with no variable terms) to describe the initial conditions.

Definition 11. KBM Configuration
Let G = 〈S, P, V,R〉 be a KBM.
A configuration of G is an enumerable set of ground atoms in LG.

Definition 12. Extension
Let G = 〈S, P, V,R〉 be a KBM, and let C be a configuration of G.
The extension of C is the unique assignment of actual predicates to the predicate vari-
ables p ∈ P , denoted ext(C) = {pC |p ∈ P} such that:

pC : Sar(p) → {true, false}
with pC(s1, . . . , sar(p)) ⇔ (R ∪ C) ` p(s1, . . . , sar(p))

114 Chapter 5. Knowledge Behavior Models

In definition 12 we used the symbol ` that indicates deductive-theoretic conse-
quence [McK]. This type of logical consequence indicates that p(s1, . . . , sar(p)) can
be proven in a finite number of deduction steps from the theory R ∪ C.

This definition needs some explanation. If we had used model-theoretic logical
consequence (indicated by the symbol �) instead, our definition would have been
more general: it would then state that every model for R ∪ C is also a model for
p(s1, . . . , sar(p)). This type of logical consequence is indeed the most fundamental
one: it defines the truth of a sentence, irrespective of its provability. The arguments for
this appreciation are given in “The Internet Encyclopedia of Philosophy” [McK], based
on Tarski’s “The Concept of Logical Consequence” [Tar83].

The rationale for using deductive-theoretic consequence is in the Curry-Howard
isomorphism, which defines the equivalence between logical proofs (in intuitionistic
logic) and programs. Because the reachability of all states that are reachable in a
program is proven by the corresponding execution of a program, we can restrict our
attention to the states whose reachability is provable by means of a finite execution of
the program. It follows from the Curry-Howard isomorphism that the reachable states
correspond to provable predicates in intuitionistic logic.

5.7.2 Proving and Disproving Sentences
We want to mechanically prove or disprove the safety properties and liveness possi-
bilities in LG, in a time polynomial to the size of our problem. Because a proof is a
finite series of valid deductions from the “theory” that corresponds to a configuration
and from previous deductions, we have to :

1. define what the valid deductions are

2. and find an algorithm that generates a proof in polynomial time.

We will use the common deduction rules of first order predicate logic, called the
elimination and introduction rules for ¬, ∧, ∨, ⊥ (false), > (true), →, ∃, and ∀
(restricted to the intuitionistic subset which has not introduction of ¬). All these are
simple, mechanically applicable rules that can be implemented in software.

In finite KBMs, all predicates p(s1, . . . , sar(p)) that can be proven from the theory
corresponding to a configuration C of the KBM 〈S, P, V,R〉, can be found in polyno-
mial time. That will of course allow us to find the remaining, non-provable predicates,
in polynomial time too.

Because R ∪ C can never be inconsistent (no negation is allowed in R or C) it
follows that:

(R ∪ C) 0 p(s1, . . . , sar(p)) ⇔ (R ∪ C) ` ¬p(s1, . . . , sar(p))

Infinite KBMs will be safely approximated by finite ones.

Because the sentences in our theory only contain universal quantifications, conjunc-
tions and implications (no negations), an implementation of KBMs in the Datalog pro-
gramming language [GM78] would be straight forward. However, in chapter 7, we
will discuss a prototype implementation based on a constraint programming (CP) li-
brary [Sch02] which offers many possibilities to optimize search strategies. This has
the additional advantage that future extensions will not necessary remain confined to
monotonic logic.

5.7. Formal Definitions and Proofs 115

Definition 13. Safety properties and liveness possibilities
Let G = 〈S, P, V,R〉 be a KBM and let C be a configuration of G
The set of liveness possibilities for C is the set :

LiveG(C) = {p(s1, . . . , sar(p))|p ∈ P, si ∈ S, (R ∪ C) ` p(s1, . . . , sar(p))}.
The set of safety properties for C is the set :

SafeG(C) = {p(s1, . . . , sar(p))|p ∈ P, si ∈ S, (R∪C) 0 p(s1, . . . , sar(p))}.

These sets correspond to the extension of C:
LiveG(C) = {p(s1, . . . , sar(p))|pC ∈ ext(C), pC(s1, . . . , sar(p)) = true}.
SafeG(C) = {p(s1, . . . , sar(p))|pC ∈ ext(C), pC(s1, . . . , sar(p)) = false}.

Note: A KBM will be used to safely approximate a concrete safety problem: what
is impossible in the KBM is impossible in the concrete problem (safety property), but
what is not impossible is certainly not guaranteed. Therefore we explicitly avoid the
term liveness properties and use liveness possibilities instead.

5.7.3 Formal Notion of Safe Approximation

To formalize the concept of safe approximation, we will assume that the actually reach-
able authority in software is defined by a theory K in LG, where G = 〈S, P, V,R〉 is a
KBM. That makes sense because:

• the operational semantics of the program can be expressed as a state machine.

• the authority in the software can be expressed as predicates about the (history of
the) state.

• the state transitions can be modeled as implications in LG :∧
{preconditions} →

∧
{postconditions}

where the preconditions and postconditions are expressed using predicates about
the (history of the) state.

Figure 5.7 shows a sketch of this conceptual transformation. It will usually not
be practical to consider the program’s actual operational semantics. A more realistic
approach would use abstract interpretation of the source code to construct a simplified
state machine that safely approximates the reachable states. Authority can then be
defined in terms of predicates over the simplified states.

Such an approach would be closer to the intuitive transformation process, presented
in the previous sections. Techniques for transforming to and from source code will be
discussed as future work in chapter 11.

Definition 14. Safe Approximation
Let G = 〈S, P, V,R〉 be a KBM.
Let C be a configuration G.
C a safe approximation of a theory K in LG ⇔

∀p ∈ P : K ` p(s1, . . . , sar(p)) ⇒ (R ∪ C) ` p(s1, . . . , sar(p))
G is a safe approximation of a theory K in LG if all its configurations C are a safe
approximation of K ∪ C.

116 Chapter 5. Knowledge Behavior Models

Figure 5.7: Safe approximation via operational semantics

5.7.4 Formal Notion of Aggregation
Aggregation is defined as a partition on the set of subjects in a KBM.

Definition 15. Aggregation
Let G = 〈S, P, V,R〉 be a KBM and let C be a configuration of G.
Let A : S → S be an idempotent operation (defining a partition)
Denote A(S) = {A(s)|s ∈ S}
Reuse A to denote a transformation operation in LG via its constant terms:

Let A(X) denote X if X ∈ V
Let A(p(X, . . . ,Xar(p))) denote p(A(X1), . . . , A(Xar(p))))
Extend A likewise to all formulas in LG.

Denote A(R) = {A(r)|r ∈ R}.
Denote A(C) = {A(p(s, . . . , sar(p)))|p(s, . . . , sar(p)) ∈ C}.
A is an aggregation from G to A(G) = 〈A(S), P, V, A(R)〉.

It is easily checked that 〈A(S), P, V, A(R)〉 is a KBM and that all formulas in
LA(G) are formulas in LG. That makes it easier to express the relations between the
safety properties in both KBMs, because we can express everything in the same lan-
guage.

Theorem 1. Aggregation respects Safe Approximation
Let G = 〈S, P, V,R〉 be a KBM
Let C be a configuration of G
Let A : S → S be an idempotent operation.
Let G′ = 〈A(S), P, V, A(R)〉 be the aggregation of G by A.
For every theory K in LG such that C is a safe approximation to K:
if (C ∪K) ` p(s1, . . . , sar(p)) then also: A(C ∪R) ` A(p(s1, . . . , sar(p))).

5.7. Formal Definitions and Proofs 117

Proof. We observe that for every deduction rule in our first order predicate logic, with
n preconditions Ei : 0 ≤ i ≤ n and postcondition F :

if a rule has the form :
E1, . . . , En

F

then :
A(E1), . . . , A(En)

A(F)
is an instance of that rule.

To illustrate this, an example for the modus ponens rule can suffice:

from A(E) → A(F), via modus ponens:
E → F, E

F
we can deduce: A(F)

This is obvious if F is an atomic formula and for the other formulas it follows di-
rectly from the recursive definition of A.

From definition 15, the correspondence between the theories is defined by the con-
figurations and the rules in G and in A(G), which means that :

E ∈ (R ∪ C) ⇒ A(E) ∈ A(R ∪ C).

Because a proof in LG is a finite series of applications of deductions rules it follows
that every deduction rule applied in the proof for p(s1, . . . , sar(p)) in LG can be ap-
plied in the proof for A(p(s1, . . . , sar(p))) in LA(G) :

if (C ∪R) ` p(s1, . . . , sar(p)) then also: A(C ∪R) ` A(p(s1, . . . , sar(p))).
and herefore :

if (C ∪K) ` p(s1, . . . , sar(p)) then also: A(C ∪ R) ` A(p(s1, . . . , sar(p))).

Corollary 1. Safety properties of aggregations are valid
Let G = 〈S, P, V,R〉 be a KBM.
Let C be a configuration of G.
Let A : S → S be an aggregation from G to A(G).
then: A−1(SafeA(G)(A(C))) ⊆ SafeG(C)

Proof. From theorem 1 :
if (C ∪R) ` p(s1, . . . , sar(p)) then also: A(C ∪R) ` A(p(s1, . . . , sar(p)))
thus: if A(C ∪R) 0 A(p(s1, . . . , sar(p))) then also: (C ∪R) 0 p(s1, . . . , sar(p))
thus: if A(C ∪R) ` A(¬p(s1, . . . , sar(p))) then also: (C ∪R) ` ¬p(s1, . . . , sar(p))
thus: A(p(s1, . . . , sar(p))) ∈ SafeA(G)(A(C)) ⇒ p(s1, . . . , sar(p)) ∈ SafeG(C)
thus: p(s1, . . . , sar(p)) ∈ A−1

(
SafeA(G)(A(C))

)
⇒ p(s1, . . . , sar(p)) ∈ SafeG(C)

Corollary 2. Finite Aggregations are Safe and Tractable Approximations

Proof. Follows directly from the finite chararcter of the KBM and from theorem 1.

This corollary means that by :

• modeling a (possibly infinite) set of entities (subjects) onto a finite set of subjects
(A(S)),

• taking care that all behavior of all the original entities (subjects) is accounted for
in the aggregate subject ((A(R)) and

118 Chapter 5. Knowledge Behavior Models

• taking care that the initial configuration is reflects the all initial access and know-
ledge in the aggregated subjects ((A(C)),

the set of safety properties in the aggregated KBM can be calculated in polynomial
time and represent a (possibly infinite) set of safety properties in the original system
that are all guaranteed!

5.7.5 Expressing Safety Problems with KBMs
Definition 16. Safety Problem
Let G = 〈S, P, V,R〉 be a KBM. Let C be a configuration of G.
Let X ⊆ {p(s1, . . . , sar(p)|p ∈ P and si ∈ S} be called a set of required safety
properties.
The safety problem is to decide if X ⊆ SafeG(C).

Definition 17. Practical Safety Problem
Let G = 〈S, P, V,R〉 be a KBM. Let C be a configuration of G.
Let X ⊆ {p(s1, . . . , sar(p)|p ∈ P and si ∈ S} be called a set of required safety
properties.
Let Y ⊆ {p(s1, . . . , sar(p)|p ∈ P and si ∈ S} be called a set of required liveness
possibilities.
The practical safety problem is to decide if Y ⊆ LiveG(C) ∧X ⊆ SafeG(C).

We call this variant practical, because its detects whether the model guarantees the
required safety properties, while not also at the same time preventing required liveness
possibilities.

Definition 18. Behavior Maximization Problem
Let G = 〈S, P, V,R〉 be a KBM. Let C be a configuration of G.
Let U ⊆ {p(s1, . . . , sar(p)|p ∈ P and si ∈ S} be called a set of optional behavior.
Let X ⊆ {p(s1, . . . , sar(p)|p ∈ P and si ∈ S} be called a set of required safety
properties.
Let Y ⊆ {p(s1, . . . , sar(p)|p ∈ P and si ∈ S} be called a set of required liveness
possibilities.
The behavior maximization problem is to find a maximal set V ⊆ U :
Y ⊆ LiveG(C ∪ U) ∧X ⊆ SafeG(C ∪ U).

Behavior maximization problems are the category of problems we are most inter-
ested in in this thesis: to find in a pattern of collaborating entities, the combinations of
maximally collaborative behavior for a subset of relied-upon entities that guarantee a
safety policy while not preventing the functionality the pattern is supposed to provide.
What behavior can we maximally enable our relied-upon entities with, for the pattern
to be useful and secure.

Definition 19. Knowledge Maximization Problem
Let G = 〈S, P, V,R〉 be a KBM. Let C be a configuration of G.
Let U ⊆ {p(s1, . . . , sar(p)|p ∈ P and si ∈ S} be called a set of optional behavior.
Let X ⊆ {p(s1, . . . , sar(p)|p ∈ P and si ∈ S} be called a set of required safety
properties.
Let Y ⊆ {p(s1, . . . , sar(p)|p ∈ P and si ∈ S} be called a set of required liveness
possibilities.
The knowledge maximization problem is to find a maximal set V ⊆ U :
Y ⊆ LiveG(C ∪ U) ∧X ⊆ SafeG(C ∪ U).

5.7. Formal Definitions and Proofs 119

Knowledge maximization problems can be used to look for maximal sets of initial
permissions(knowledge facts) that make a pattern useful and secure, when the behavior
of the relied-upon subjects in the patterns cannot be (re-)configured.

Definition 20. Configuration Maximization Problem
Let G = 〈S, P, V,R〉 be a KBM. Let C be a configuration of G.
Let U ⊆ {p(s1, . . . , sar(p)|p ∈ P and si ∈ S} be called a set of optional facts (both
knowledge and behavior).
Let X ⊆ {p(s1, . . . , sar(p)|p ∈ P and si ∈ S} be called a set of required safety
properties.
Let Y ⊆ {p(s1, . . . , sar(p)|p ∈ P and si ∈ S} be called a set of required liveness
possibilities.
The configuration maximization problem is to find a maximal set V ⊆ U :
Y ⊆ LiveG(C ∪ U) ∧X ⊆ SafeG(C ∪ U).

Configuration maximization problems are a generalization of behavior and know-
ledge maximization problems.

Chapter 6

The Language SCOLL

This chapter describes the declarative language SCOLL: Safe Collaboration Language.
Many concepts and terms that have been defined and explored in chapter 5 will be used
in this chapter, without further explanation.

SCOLL is the language we will use to express patterns of interacting subjects and
the safety problems we want to solve considering such patterns. It is based on a kernel
language of which we will express the semantics in terms of the Knowledge Behavior
Models (KBMs) of chapter 5. The semantics of the full language can then be expressed
in terms of the kernel language.

The language is purely declarative and does not allow the user to express how the
problem that is described should be solved. That is left to the implementation of the
language and will be discussed in chapter 7.

The language SCOLL can be extended by means of linguistic abstraction and syn-
tactic sugar. These techniques are well established practices in programming language
design and are described by Van Roy and Haridi in “Concepts, Techniques, and Models
for Computer Programming”[VH04].

6.1 Objectives
Like the formalism presented in the previous chapter, the SCOLL language has a prac-
tical purpose: to help software designers and developers to understand the required
behavior- and permission-restrictions for (sets of) programmed entities, given a global
safety goal and a context (pattern) in which these entities will play a well-defined role.

The language must therefore not only be simple and expressive, but also provide
support for the specific needs of its intended users, the developers of secure software:

1. The structure of the language should allow developers to describe the different
aspects of the problem separately, to encourage the reuse of common parts and
the exploration of the effects of varying every part independently from the other
parts.

2. The interdependencies between the different parts should be simple, unambigu-
ous, and completely described.

3. When expressing a programmed entity’s behavior restrictions in SCOLL, the
most important errors are the ones that compromise the validity of the model as a

121

122 Chapter 6. The Language SCOLL

safe approximation of the effects of interaction between the entities. Therefore,
the easiest way to approximate a programmed entity’s behavior should be the
safest way.

4. Improving the accuracy of the modeled behavior should never lead to an under-
estimation of eventual authority.

5. The language should allow the user to refine a subject’s behavior, without having
to adapt the behavior of the other subjects. It should encourage an iterative and
incremental approach to behavior refinement, starting from crude safe approx-
imations and refining behavior predicates only when the results fail to indicate
that a pattern is safe.1

6. The language should provide flexible support for aggregation. Aggregation is a
technique, expained in section 5.3.1 and formally defined in section 5.7.4, that
allows (possibly infinite) sets of programmed entities (including entities that do
not exist in the initial configuration but may be created later) to be modeled as a
single subject. Theorem 1 in section 5.7.4 proved that aggregation provides valid
results for the different problems that can be expressed using KBMs.

6.2 Structure of a Kernel SCOLL Program
In the kernel language, a SCOLL program has a simple structure that roughly corre-
sponds to the parts that constitute a model of interacting entities in section 5.3, with
additional parts to describe the initial configuration and the requirements we want to
impose:

1. Declarations : Declaration of the predicates with their arity.

2. System : System rules to express the preconditions for successful collaboration and
its effects.

3. Behavior : Behavior declarations to describe the types of behavior present in the
pattern.

4. Subject : Declaration of the subjects in the pattern.

5. Configuration : The initial permissions and authority.

6. Goal : The policy to be respected.

Throughout a SCOLL Program, several types of identifiers will be used. Their
syntax is represented in table 6.1 and will be expressed formally in figure 6.3 (Section
6.3).

We now describe every part separately. The examples provided in this section are
only intended to clarify the structure of every part. Together they describe a SCOLL
program, depicted in figure 6.1, that is valid in the kernel language, but not necessarily
meaningful or realistic. Section 6.9 will provide a practical example, expressed in the
complete SCOLL language.

1SCOLL is designed to detect when safety is guaranteed, not to detect when safety is broken. A failure to
detect that safety is guaranteed may indicate that the relied-upon behavior in the pattern was not expressed
to the appropriate level of precision.

6.2. Structure of a Kernel SCOLL Program 123

declare
permission : access/2
behavior : may.grantTo/3
knowledge : did.grantTo/3 did.receive/2

system
access(A,B) access(A,X) A:may.grantTo(B,X)
=> access(B,X)

access(A,B) access(A,X) A:may.grantTo(B,X)
=> A:did.grantTo(B,X)

access(A,B) access(A,X) A:may.grantTo(B,X)
=> B:did.receive(X)

behavior
FORWARDER {

did.receive(X) forwardTo(P) => may.grantTo(P,X)
isSelf(Fwdr) => may.grantTo(X,Fwdr)
}

UNRESTRICTED {
=> may.grantTo(X,Y)
}

PASSIVE {}
subject

f1: FORWARDER
f2: FORWARDER

? alice: PASSIVE
bob: UNRESTRICTED
carol: PASSIVE

config
access(f1,f1) access(f1,f2) f1:isSelf(f1)
f1:isProxy(f2) access(f2,f2) access(f2,bob)
access(f2,carol) f2:isSelf(f2) f2:isProxy(carol)

? f2:isProxy(bob)
access(alice,alice) access(alice,f1)
access(bob,bob)
access(carol,carol)

goal
access(bob,carol)

! access(bob,alice)

Figure 6.1: An example of a complete SCOLL program

Table 6.1: Identifiers in SCOLL

type of identifier syntax example
variable [A-Z][0-9,a-z,A-Z]∗ A1b
subject [a-z][0-9,a-z,A-Z]∗ alice01
behavior [A-Z]+ FORWARDER
predicate label [a-z][0-9,a-z,A-Z,\.]∗ may.sendTo

124 Chapter 6. The Language SCOLL

6.2.1 Declarations
This part consists of the reserved word declare, followed by:

“permission :”,
a sequence of predicate declarations for permissions,
“behavior :” ,
a sequence of predicate declarations for behavior,
“knowledge :”, and
a sequence of predicate declarations for non-private subject knowledge

declare
permission : access/2
behavior : may.grantTo/3
knowledge : did.grantTo/3 did.receive/2

Figure 6.2: Example declare part

A predicate declaration consists of a unique predicate label identifier, followed by
a “/” and a strict positive integer to indicate the arity of the predicate.

SCOLL distinguishes four kinds of predicates, of which the first three must be
declared in the declare part:

Permission predicates are also called system knowledge predicates. They are de-
clared after the permission keyword and express the permissions in the mod-
eled system. They represent properties of subjects and relations between them
that are known and managed by the system. They are used as prerequisites for
authority propagation and also to express the effects of authority propagation.
Permissions are not visible to the subjects holding them, at least not directly.
Section 6.8.1 will explain why.

Behavior predicates are declared after the behavior keyword. They model the as-
pects of an entity’s programmed behavior that can have an influence on the pro-
pagation of authority. The first argument in the predicate indicates the subject
whose behavior the predicate refers to. Most examples will adopt the convention
of labeling behavior predicates with a verb stem preceded by the may. prefix
(Section 5.3.2).

Subject knowledge predicates are declared after the knowledge keyword and ex-
press a subject’s knowledge of a successful interaction. They represent the part
of the effects of authority propagation that is visible to the subject. Most ex-
amples will adopt the convention of labeling these predicates with a verb stem
preceded by the did. prefix (Section 5.3.2). The first argument in the predicate
indicates the subject that has the knowledge expressed by the predicate.

Private knowledge predicates are not declared here. They will be automatically de-
clared in the behavior part (Section 6.2.3), upon their first use in the description
of a behavior type.

When appropriate, we will use the alternative notation for behavior and knowledge
predicates that was introduced in section 5.3.2. We position the first argument in front

6.2. Structure of a Kernel SCOLL Program 125

of the label, followed by a colon. Instead of the normal notation b(S1, . . . ,Sn), we
write: S1:b(S2, . . . ,Sn).

In some parts, predicates will be expressed over variables, while in other parts all
arguments will be subjects (constants). Predicates over subjects are called facts. Con-
trary to our notation in section 5.3.4, SCOLL predicates never mix subject constants
with variables.

We will refer to permission predicates, subject knowledge predicates, and private
knowledge predicates with the general term “knowledge predicates”. Likewise, per-
mission facts, subject facts, and private knowledge facts will be indicated as “know-
ledge facts”.

In the behavior part (Section 6.2.3), all predicates will be used with one less ar-
gument than the arity they are declared with: the first argument is implicit and therefore
dropped. Section 6.2.3 will explain why.

The example in figure 6.2 declares a single permission predicate access with
arity 2, a behavior predicate may.grantTo with arity 3, and the subject knowledge
predicates did.grantTo and did.receive with arities 3 and 2 respectively.

6.2.2 System

This part consists of the reserved word system, followed by a sequence of Horn
clauses that express how new knowledge facts will be derived from existing knowledge
facts and behavior facts. The Horn clauses in this part are also referred to as system
rules. They consist of a body, the reserved word “=>” to indicate an implication, and
a head.

system
access(A,B) access(A,X) A:may.grantTo(B,X)
=> access(B,X)
access(A,B) access(A,X) A:may.grantTo(B,X)
=> A:did.grant(B,X)
access(A,B) access(A,X) A:may.grantTo(B,X)
=> B:did.receive(X)

Figure 6.3: Example system part

The body of a system rule consists of a sequence of predicates over subject vari-
ables, representing a conjunction of the conditions expressed by the individual predi-
cates. The head of the Horn clause consists of a single predicate over variables.

All occurrences of a predicate must have been declared in the declare part and
be used with the number of arguments indicated by its arity. All subject variables are
implicitly declared upon the first use of their identifier in a rule and have a scope that
coincides with the rule.

In the kernel language, only permission predicates and behavior predicates can
be present in the body of a system rule. Only a permission predicate or a subject
knowledge predicate can form the head of a system rule.

The example in figure 6.3 expresses three system rules with the same condition.
The complete language will allow multi-headed Horn clauses to express such a set of
rules concisely.

126 Chapter 6. The Language SCOLL

The first rule expresses the propagation of an access() permission (to a subject
referenced by variable X) from a subject referenced by variable A to a subject refer-
enced by variable B. For such propagation to happen, A must have prior access() to
B and to X, and A’s behavior must indicate its intention to grant this access permission
to B.

The other two rules express what knowledge will become available to subjects A
and B, respectively A:did.grantTo(B,X) and B:received(X).

This is an example of a non-collaborative system (Section 1.3.8). Collaborative
systems have at least one system rule with preconditions on the behavior of more than
one subject involved in the propagation. Because of this, collaborative systems pro-
vide ways to restrict authority propagation that rely upon the behavior restrictions of
subjects that are strategically inter-positioned between the untrusted subjects in the
pattern.

6.2.3 Behavior

This part consists of the reserved word behavior, followed by a sequence of beha-
vior declarations. Every behavior declaration consists of a unique behavior identifier,
followed by “{”, a sequence of behavior rules, and “}”.

behavior
FORWARDER {

did.receive(X) forwardTo(P) => may.grantTo(P,X)
isSelf(Fwdr) => may.grantTo(X,Fwdr)
}

UNRESTRICTED {
=> may.grantTo(X,Y)
}

PASSIVE {}

Figure 6.4: Example behavior part

Every behavior rule is a Horn clause, consisting of a body, “=>”, and a head.
The body consists only of subject knowledge predicates, both public (declared in the
declare part) and private. The head is a behavior predicate, declared earlier in the
declare part.

The private knowledge predicates are declared upon their first use in the body of a
behavior rule. Their scope stretches over all rules in the behavior declaration, indicated
by the enclosing { and }.

Like in system rules, only subject variables (no constants) are used in the predicates.
All subject variables are implicitly declared upon the first use of their identifier in a rule
and have a scope that coincides with the rule.

All predicates in this part are represented with an implicit (not shown) first argu-
ment variable, which makes it look as if the predicates are used with one less argument.
The private knowledge predicates that are declared in this section will therefore have
an arity of 1 + the number of arguments used in their first occurrence. Upon instantia-
tion of a rule, when the variables are substituted by subjects in the implementation of
the language, the implicit first argument will be replaced by the actual subject whose
behavior the instantiated rule expresses.

6.2. Structure of a Kernel SCOLL Program 127

Making the first argument implicit prevents the developer from reusing that argu-
ment’s variable identifier in the other parts of the rule to refer to “self” and thereby
express implicit conditions. We keep all conditions explicit to prevent the developer
from making modeling mistakes when expressing behavior. If the developer forgets or
drops a condition in a behavior rule, the behavior is still safely approximated, because
the rule will only be triggered in more circumstances.

Where relevant, self referencing can be modeled explicitly with private knowledge
predicates like isSelf(X), as is shown in the FORWARDER behavior of the example
in figure 6.4.

This example declares three types of behavior. The underlined first occurrences of
the predicates forwardTo() and isSelf() are both declared with arity 2, within
the scope of all behavior rules of FORWARDER behavior. All other predicates were
declared in the declare part. All predicates have an implicit (invisible) variable in
the first argument.

The FORWARDER type expresses may.grantTo() behavior on condition of hav-
ing received access to the subject (X) it will pass on and having forwardTo() know-
ledge (private) about the subject (P) it will grant access-to-X to. Its second rule indi-
cates that it also wants to grant access to the subjects it knows to be isSelf() to all
subjects.

The UNRESTRICTED type expresses unconditional grant() behavior.
The PASSIVE type expresses no behavior, in no circumstances, simply by using

an empty sequence of rules.
At this point the reader may wonder why the behavior rules express behavior, rather

than behavior restrictions. It may seem awkward or wrong, from a certain point of view,
that expressing the unrestricted behavior of unknown entities (e.g. UNRESTRICTED)
requires more work than expressing uncooperative behavior (e.g. PASSIVE). Section
6.5.4 will introduce safe defaults for behavior. Section 6.7.7 will explain why behavior
restrictions should not be modeled directly. Section 6.8.9 will show how programmed
behavior should be mapped to subject behavior in SCOLL.

6.2.4 Subject

This part consists of the reserved word subject, followed by a sequence of subject
declarations. A subject declaration consists of an optional question mark “?”, a subject
identifier, a colon “:”, and a behavior identifier.

subject
f1: FORWARDER
f2: FORWARDER

? alice: PASSIVE
bob: UNRESTRICTED
carol: PASSIVE

Figure 6.5: Example subject part

All subjects are declared in this part. Their behavior is indicated by the behavior
identifier in their declaration and must have been declared in the behavior part of
the SCOLL program.

128 Chapter 6. The Language SCOLL

The optional “?” indicator marks a subject to be maximized for behavior. If any
subject is marked with “?”, the SCOLL program expresses a behavior maximization
problem (Definition 18, Section 5.7.2). The behavior of all marked subjects will be
maximized.

The solution to a behavior maximization problem is a list of zero or more maximal
sets of behavior facts. Each set will contain the behavior facts for zero or more “?”-
marked subjects, that can be added to its behavior unconditionally, without violating
the required safety properties and without preventing the required liveness possibilities.
The sets in the solution are maximal, in the sense that adding one more behavior fact to
such a set will no longer guarantee the safety properties of the SCOLL program. The
safety properties and liveness possibilities will be expressed in the goal part (Section
6.2.6).

Five subjects are instantiated in the example of figure 6.5. Two of them, f1 and f2,
have FORWARDER behavior. The behavior of bob is UNRESTRICTED, while carol
is PASSIVE. The behavior of alice will be maximized, starting from PASSIVE.

6.2.5 Configuration
This part consists of the reserved word config, followed by a sequence of knowledge
facts, each of them optionally preceded by a question mark “?”. Knowledge facts
are grounded instances of knowledge predicates, including permissions and private
knowledge predicates. All facts are represented with explicit (visible) first argument.
The arguments in the facts must be declared in the subject part.

All facts have to be derived from knowledge predicates that were defined in one of
the previous parts of the SCOLL program. Private knowledge facts must be instances
of a private knowledge predicate that was declared in the behavior declaration of the
subject in the first argument of the fact.

config
access(f1,f1) access(f1,f2) f1:isSelf(f1)
f1:isProxy(f2) access(f2,f2) access(f2,bob)
access(f2,carol) f2:isSelf(f2) f2:isProxy(carol)

? f2:isProxy(bob)
access(alice,alice) access(alice,f1)
access(bob,bob)
access(carol,carol)

Figure 6.6: Example config part

The config part can contain:

• system knowledge facts to indicate the initial permissions. These facts must be
derived from permission predicates, declared in the system part.

• public subject knowledge facts to indicate residue knowledge from earlier col-
laboration. These facts must be derived from subject knowledge predicates, de-
clared in the system part.

• private subject knowledge facts to indicate initialization knowledge available to
the subject. These facts must be derived from the private knowledge facts that

6.3. Kernel SCOLL Syntax 129

are declared in the behavior declaration that corresponds to the subject in their
first argument.

The facts preceded by “?” indicate optional facts that will be maximized together
with the behavior predicates of the subjects whose declaration is marked with ? in the
subject part.

If a “?” is present in this part but not in the subject part, the SCOLL program
defines a Knowledge Maximization Problem (Definition 19, Section 5.7.2). If a “?” is
present in this part and in the subject part as well, the SCOLL program defines a
configuration maximization problem (Definition 20, Section 5.7.2).

In the example of figure 6.6, the access() permission facts describe an initial
access graph. The example further shows that f1 is initialized to forward to f2, who
is initialized to forward to carol and optionally also to bob. Both forwarders are also
initialized with explicit isSelf() knowledge.

It is considered bad practice to initialize a subject X with private knowledge about a
subject Y, while X has no initial permission to Y. Doing so can either indicate that X has
a powerful ability to identifty Y and uses that ability consistently to check every subject,
or that a modeling error was made. Because the latter is more probable, the SCOLL
syntax checker will generate a warning, if it detects a private knowledge relation in the
config part that is not accompanied by an appropriate permission fact.

An exception to this rule will be made in section 6.7.2, for initial knowledge that
models the parent-child relation.

6.2.6 Goal

The goal part consist of the reserved word goal, followed by a sequence of liveness
possibilities and safety properties. Liveness possibilities are presented as knowledge
facts. Safety properties are presented as knowledge facts preceded by an exclamation
mark “!”.

goal
access(bob,carol)

! access(bob,alice)

Figure 6.7: Example goal part

All facts in this part must be derived from knowledge predicates, declared in earlier
parts. All facts are represented with explicit (visible) first argument. The arguments in
the facts must be declared in the subject part.

The example in figure 6.7 contains a liveness possibility to indicate that the pattern
should not prevent bob from having or acquiring access to carol. The safety property
requires the pattern to prevent bob from having or acquiring access to alice.

6.3 Kernel SCOLL Syntax

Figure 6.3 shows the syntax of the kernel language in EBNF form.

130 Chapter 6. The Language SCOLL

〈Program〉 ::= 〈Declare〉 〈System〉 〈Behaviors〉 〈Subjects〉 〈Config〉 〈Goals〉
〈Declare〉 ::= 〈DPermission〉 〈DBehavior〉 〈DKnowledge〉
〈System〉 ::= system 〈Rule〉+

〈Behaviors〉 ::= behavior 〈Behavior〉+

〈Subjects〉 ::= subject 〈Subject〉+

〈Config〉 ::= config 〈ConfigFact〉∗

〈Goals〉 ::= goal (〈Safety〉 | 〈Liveness〉)∗

〈DPermission〉 ::= permission : 〈DeclarePred〉∗

〈DBehavior〉 ::= behavior : 〈DeclarePred〉∗

〈DKnowledge〉 ::= knowledge : 〈DeclarePred〉∗

〈DeclarePred〉 ::= 〈PredLbl〉 “/” 〈Arity〉
〈Behavior〉 ::= 〈BehaviorID〉 “{” 〈Rule〉∗ “}”

〈Rule〉 ::= 〈Body〉 “=>” 〈Head〉
〈Body〉 ::= 〈Pred〉∗

〈Head〉 ::= 〈Pred〉

〈Pred〉 ::= (〈VarID〉 “:”)? 〈PredLbl〉 “(”
(
〈VarID〉 (“,” 〈VarID〉)∗

)?
“)”

〈Subject〉 ::= (“?”)? 〈SubjID〉 “:” 〈BehaviorID〉
〈ConfigFact〉 ::= (“?”)? 〈Fact〉

〈Fact〉 ::= (〈SubjID〉 “:”)? 〈PredLbl〉 “(”
(
〈SubjID〉 (“,” 〈SubjID〉)∗

)?
“)”

〈Safety〉 ::= “!” 〈Fact〉
〈Liveness〉 ::= 〈Fact〉

〈Arity〉 ::= [“1”− “9”] [“0”− “9”]∗

〈BehaviourID〉 ::= [“A”− “Z”]+

〈VarID〉 ::= [“A”− “Z”] [“0”− “9”“a”− “z”“A”− “Z”]∗

〈PredLbl〉 ::= [“a”− “z”] [“0”− “9”“a”− “z”“A”− “Z”“.”]∗

〈SubjID〉 ::= [“a”− “z”] [“0”− “9”“a”− “z”“A”− “Z”]∗

The reserved words : declare, permission, behavior, knowledge,
system, subject, config and goal cannot be used as 〈PredLbl〉 or 〈VarId〉.

Figure 6.8: Kernel SCOLL Syntax

6.4. KBM Semantics 131

6.4 KBM Semantics
We define a SCOLL program’s denotational semantics in terms of Knowledge Beha-
vior Models (KBMs, Definition 9 Section 5.7.1). First we define formally how some
parts of a SCOLL program add to the definition of the KBM that represents its logi-
cal semantics. Then we explain how the whole program describes the safety problems
defined in section 5.7.2.

Definition 21. KBM Semsantics of a Kernel SCOLL program
Let PSCOLL be a SCOLL program, defined by its syntax as described in section 6.3,
with the structural restrictions described in section 6.2.
The KBM G = 〈S, P, V,R〉 is the KBM semantics of PSCOLL where:

S is the set of subjects declared in the subject part of PSCOLL.

P is a set of predicate variables corresponding to the predicates declared in the
declare part of PSCOLL augmented with the disjunct union of all behavior-
specific predicates declared in the behavior part of PSCOLL.

V is the infinite set of variables identified by the subject variable identifiers that are
allowed in SCOLL.

R is the set of implication formulas that correspond to:
1. The rules in the system part of PSCOLL :
p1(X1,1, . . . , X1,ar(p1)) ∧ . . . ∧ pn(Xn,1, . . . , Xn,ar(pn))

→ pn+1(Xn+1,1, . . . , Xn+1,ar(pn+1))
for every rule declared in the system part :
p1(X1,1,. . .,X1,ar(p1)) . . . pn(Xn,1,. . .,Xn,ar(pn))
=> pn+1(Xn+1,1,. . .,Xn+1,ar(pn+1))
2. augmented with the disjunct union per subject s in S of the rules correspond-
ing to the behavior rules of s :
p1(s,X1,2, . . . , X1,ar(p1)) ∧ . . . ∧ pn(s,Xn,2, . . . , Xn,ar(pn))

→ pn+1(s,Xn+1,2, . . . , Xn+1,ar(pn+1))
for every rule declared in the behavior part corresponding to the behavior of
s :
p1(X1,2,. . .,X1,ar(p1)) . . . pn(Xn,2,. . .,Xn,ar(pn))
=> pn+1(Xn+1,2,. . .,Xn+1,ar(pn+1))

It is trivial to check that G is indeed a KBM, by comparing the definitions and the
structural properties.

To define the KBM semantics of a kernel SCOLL program, we did not make use
of the config part or the goal part of the program and we did not consider any
maximization question marks in the program. These parts will now be used to define
problems on the KBM (and their solutions).

Definition 22. Safety Problems in SCOLL

Let PSCOLL be a SCOLL program in which :

• no subject is marked with ? in the subject part

• no fact is marked with ? in the config part

• no liveness requirements are present in the goal part

132 Chapter 6. The Language SCOLL

Let G be the semantic KBM of the program.
Let C be the configuration of G consisting of the knowledge facts described in the
config part of PSCOLL.
Let X be the set of required safety properties described in the goal part of PSCOLL

Then PSCOLL defines the safety problem that is to decide if X ⊆ SafeG(C).

Definition 23. Practical Safety Problems in SCOLL

Let PSCOLL be a SCOLL program in which :

• no subject is marked with ? in the subject part

• no fact is marked with ? in the config part

Let G be the semantic KBM of the program.
Let C be the configuration of G consisting of the knowledge facts described in the
config part of PSCOLL.
Let X be the set of required safety properties described in the goal part of PSCOLL

Let Y be the set of required liveness possibilities described in the goal part of PSCOLL

Then PSCOLL defines the practical safety problem that is to decide if X ⊆ SafeG(C)
and Y ⊆ LiveG(C).

Definition 24. Behavior Maximization Problems in SCOLL

Let PSCOLL be a SCOLL program in which :

• no fact is marked with ? in the config part

Let G be the semantic KBM of the program.
Let C be the configuration of G consisting of the knowledge facts described in the
config part of PSCOLL.
Let X be the set of required safety properties described in the goal part of PSCOLL

Let Y be the set of required liveness possibilities described in the goal part of PSCOLL

Then PSCOLL defines the behavior maximization problem that is to find the maxi-
mal sets of additional behavior facts for the ?-marked subjects that ensure that X ⊆
SafeG(C) and Y ⊆ LiveG(C).

Definition 25. Knowledge Maximization Problems in SCOLL

Let PSCOLL be a SCOLL program in which :

• no subject is marked with ? in the subject part

Let G be the semantic KBM of the program.
Let C be the configuration of G consisting of the knowledge facts described in the
config part of PSCOLL.
Let X be the set of required safety properties described in the goal part of PSCOLL

Let Y be the set of required liveness possibilities described in the goal part of PSCOLL

Then PSCOLL defines the knowledge maximization problem that is to find the maximal
sets of ?-marked knowledge facts in the config part PSCOLL that still ensure that
X ⊆ SafeG(C) and Y ⊆ LiveG(C).

Definition 26. Configuration Maximization Problems in SCOLL

6.5. The Complete SCOLL Language 133

Let PSCOLL be a SCOLL program.
Let G be the semantic KBM of the program.
Let C be the configuration of G consisting of the knowledge facts described in the
config part of PSCOLL.
Let X be the set of required safety properties described in the goal part of PSCOLL

Let Y be the set of required liveness possibilities described in the goal part of PSCOLL

Then PSCOLL defines the configuration maximization problem that is to find the maxi-
mal sets of additional behavior facts for the ?-marked subjects and of ?-marked know-
ledge facts in the config part that still ensure that X ⊆ SafeG(C) and Y ⊆
LiveG(C).

6.5 The Complete SCOLL Language
A SCOLL program has the same six parts as a program in kernel SCOLL. The general
purpose of each part is largely unchanged. Some restrictions in the kernel language will
be removed or relaxed. This section describes these relaxations and their purpose. The
translation of the newly allowed constructs to the kernel language will unambiguously
define their semantics.

SCOLL is a language in evolution. Future extensions can use the same techniques
of linguistic abstraction and syntactic sugar to extend and/or adapt the full language
and will not require any changes in the implementation of the kernel language, unless
for non-functional concerns (e.g performance, scalability). Apart from this practical
advantage, the kernel language approach provides a simple way to discuss changes
proposed to the language, in terms of the simpler kernel language.

In this section we describe the current version of SCOLL, which corresponds to the
current version of the constraint based implementation of the language, called “SCOL-
LAR” that will be presented in chapter 7.

6.5.1 Multi-Headed Rules
We allow multi-headed system and behavior rules of the form:

p1(V1,. . .,Vk1) . . . pn(V1,. . .,Vkn
)

=> q1(V1,. . .,Vl1)) . . . qm(V1,. . .,Vlm);

Both left hand side and right hand side of the rules are now conjunctions. The
semicolon “;” is used as a delimiter between rules. ”We translate such a rule into the
kernel language as m different Horn clauses :

p1(V1,. . .,Vk1) . . . pn(V1,. . .,Vkn
) => q1(V1,. . .,Vl1)

p1(V1,. . .,Vk1) . . . pn(V1,. . .,Vkn
) => . . .

. . . => . . .
p1(V1,. . .,Vk1) . . . pn(V1,. . .,Vkn) => qm(V1,. . .,Vlm)

For system rules, all predicates on the right hand site must be declared as permis-
sion or knowledge predicates, for the translation to be valid in the kernel language. For
behavior rules, all predicates on the right hand side must be declared as behavior
predicates, for the translation to be valid in the kernel language.

From now on we will use multi-headed rules when appropriate, as their translation
to Horn clauses is straight forward and all other transformation rules will be indepen-
dent.

134 Chapter 6. The Language SCOLL

6.5.2 Using Wildcards
All subject variables have rule scope. To indicate that two arguments should always
be substituted by the same value, we use the same variable identifier for both argu-
ments. To indicate that an argument should be substituted independently from all other
arguments, we must make sure that the variable is unique in the rule.

We can make the latter more explicit and immediately visible by using the underbar
character “ ” as a wildcard, instead of a normal variable identifier. Upon preprocessing,
every occurrence of “ ” will be replaced by a different variable identifier that is unique
in the rule.

For example this behavior rule:

did.sendTo(A,) did.sendTo(B,)
=> may.sendTo(A,B) may.return()

will be transformed into :

did.sendTo(A,V1) did.sendTo(B,V2)
=> may.sendTo(A,B) may.return(V3)

before being translated to the kernel language.

6.5.3 Explicit Refinement Rules
This section describes the extension of the system part with refinement rules: rules
that derive general subject knowledge from specific subject knowledge and rules that
derive specific behavior from general behavior. Their translation into the kernel lan-
guage will be explained using a preprocessing step that removes the refinement rules.

We introduced the concept of behavior refinement in section 5.5 by means of an
example of behavior depending on the invocation context.

The behavior predicates may.returnFor and may.returnFor0 were used
to refine the may.return behavior. The first one expresses the responder’s intent
to return a value for the invocations in which the invoker emits another value and to
express requirements about the latter. The second one expresses the responder’s intent
to return a value for the invocations in which the invoker emits nothing.

The knowledge predicates did.returnFor and did.returnFor0 refined
did.return knowledge. The complementary knowledge did.getFrom was re-
fined to did.getFromFor and did.gettFromFor0.

The refined behavior and knowledge predicates allowed us to express not only re-
turn behavior that depends on what the invoker sends in the same invocation (Section
5.5.4), but also the behavior of a proxy subject (Section 5.5.5) that respects such deci-
sions made by its target.

The refinement approach was generalized in section 5.6.2, from which we repeat
here only the conclusions :

1. General behavior implies refined behavior

2. Refined knowledge implies general knowledge

3. System rules should generate refined knowledge (more knowledge) from refined
behavior (less behavior).

6.5. The Complete SCOLL Language 135

4. To refine a relied-upon subject’s behavior: express the body of its behavior rules
using more refined knowledge (stronger conditions) and/or express the head of
its behavior rules using more refined behavior (applicable in less situations).

The first two conclusions above express refinement relations between the predicates
and are independent of the actual system rules and behavior rules. We will allow the
user to express these refinement relations explicitly as rules in the system part, by
introducing rules of two new types:

1. Rules to generate more refined knowledge from less refined knowledge.

2. Rules to deduce more refined behavior from less refined behavior.

Doing so will allow the user to keep the unrefined system rules as they are and to
add only new system rules for the refined predicates. The existing behavior declarations
need no adaptations, except of course for the relied-upon subjects whose behavior is
being refined.

declare
. . .

system
B:may.return(Y)
=> B:may.returnFor0(Y) B:may.returnFor(X,Y);

B:did.returnFor0(Y) => B:did.return(Y);
B:did.returnFor(X,Y) => B:did.return(Y);
. . .
. . . B:may.return(Y) . . . => . . .
. . .
. . . => . . . B:did.returnFor0(Y) . . .
. . .
. . . => . . . B:did.returnFor(X,Y) . . .
. . .

behavior
. . .
BEHAVIORi{

. . .

. . . => may.return(Y) . . .

. . .}
. . .

subject
s1 :BEHAVIORi1 . . . sk :BEHAVIORik

config
. . . si:did.returnFor0(sj) . . .

goal
. . .

Figure 6.9: Extract from a SCOLL program with refinement rules

An example will show how the refinement rules are preprocessed before being
translated into kernel SCOLL. Consider the program extract in figure 6.9. The first

136 Chapter 6. The Language SCOLL

rule in the system part is a behavior refinement rule, the next two rules are know-
ledge refinement rules.

The preprocessing will remove these rules from the system part and will make
appropriate changes to the system rules that have an unrefined knowledge predicate in
their body and/or a refined knowledge predicate in their head. In the behavior part,
the rules that have the unrefined behavior predicate in their head will be changed. The
config part will also be affected.

After preprocessing, the SCOLL program in Figure 6.10 does no longer contain
the refinement rules. Every system rule that contains an unrefined behavior predicate is
copied once for every refinement of the predicate. In that copy the unrefined predicate
is replaced by the refined predicate. Since only the system rules generate this kind of
knowledge, this guarantees that every refined behavior fact will generate at least the
same knowledge as its unrefined version.

system
. . .
. . . rEmit(B Y) . . . => . . .
. . . rEmit0(B Y) . . . => . . .
. . . did.returnFor(B X(1) Y) . . . => . . .
. . .
. . . => . . . rEmitted0(B Y) rEmitted(B Y) . . .
. . .
. . . => . . . did.returnFor(B X Y) rEmitted(B Y) . . .
. . .

behavior
. . .
BEHAVIORi{

. . .

. . . => rEmit(Y) rEmit0(Y) may.returnFor(X(1) Y) . . .

. . .}
. . .

subject
s1 :BEHAVIORi1 . . . sk :BEHAVIORik

config
. . . rEmitted0(si sj) . . .
rEmitted(si sj)

goal
. . .

(1) The added variable must differ from all existing variables in the rule.

Figure 6.10: The equivalent extract without refinement rules

Every system rule that contains a refined knowledge predicate in its head will be
extended, by adding the unrefined version of the predicate to the head of the rule. Since
only the system rules generate this kind of knowledge, this guarantees that whenever a
refined knowledge fact is generated, the unrefined version will be generated too. This
means that every refined knowledge that is generated will generate at least the same
behavior as its unrefined version.

6.5. The Complete SCOLL Language 137

Every subject rule that contains an unrefined behavior predicate in its head will
be extended by adding every refined version of the predicate to the head of the rule.
Since only behavior rules generate behavior, this guarantees that whenever an unrefined
behavior fact is generated, every refined version of the fact is also generated.

Refined subject knowledge facts in the config part represent refined knowledge,
left over from an earlier evolution (Section 5.4.6). These facts are not necessarily re-
generated by the system rules. They must therefore be complemented by the unrefined
version of the knowledge. Otherwise, refined left-over knowledge could have less ef-
fects on the generation of behavior (via the behavior rules) than its unrefined version
would have.

All these preprocessing transformations ensure that unrefined behavior remains a
safe over-approximation of refined behavior.

The bodies of the behavior rules need no preprocessing. Whenever a general know-
ledge fact triggers a behavior rule, its refined version will trigger the same rule indi-
rectly, because the changes in the system part and the config part make sure that
unrefined knowledge facts are always complemented by their refined versions.

Multiple refinements are preprocessed one by one. The order in which this prepro-
cessing happens will only affect the order of the rules and of the predicates in the rules
in the preprocessed program.

From the definition of the KBM semantics of a kernel program (Definition 21), we
can directly conclude that the order of the rules and the order of the predicates in the
body of the rules have no effect on the semantics of the program.

6.5.4 Safe Defaults

Unrestricted behavior safely approximates all behavior and is therefore the default be-
havior in SCOLL. In the subject part, subjects can be declared without a behavior.
If so, it will have the default behavior.

declare
permission : . . .
behavior : b1/i1 . . . bn/in

knowledge : . . .
system

. . .
behavior

. . .

. . .

. . .
subject

. . .
alice

. . .

Figure 6.11: Default behavior in SCOLL

The translation is shown by example in figures 6.11 and 6.12. The default behavior
can be declared in a single behavior rule that has an empty body and has every declared

138 Chapter 6. The Language SCOLL

behavior predicate in its head, using the underbar “ ” for every argument.

declare
permission : . . .
behavior : b1/i1 . . . bn/in

knowledge : . . .
system

. . .
behavior

. . .
DEFAULT {

=> b1(,. . .,) . . . bn(,. . .,)}
subject

. . .
alice : DEFAULT

. . .

Figure 6.12: The equivalent kernel SCOLL

6.6 SCOLL Syntax
For completeness, figure 6.6 shows the syntax of SCOLL in EBNF form. The syntax
only differs from the kernel language syntax in the following ways:

• Rule heads can now contain multiple predicates (at least one) and end with a
semicolon.

• The underbar (“ ”) wildcard is introduced.

• The restriction that at least one behavior must be declared in the behavior part
is removed, since subjects can use the default behavior.

• Subjects specify their behavior optionally in the subject part.

6.7 Possible Extensions
Many other extensions to SCOLL are possible and useful. Some of them will be pre-
sented in this section, most of them are in a very early design stage. They will make
it into SCOLL if and when the need arises from experience by the SCOLL users com-
munity, depending on the time and resources available in the open source SCOLL
development group and on the priorities put forward by users and developers alike.

6.7.1 Expressing Refinement Partial Orders
Section 5.6.2 explained how the introduction of a nil element, a ⊥ element (bottom)
and a partial order can be used to refine the may.return predicate and how this can
be generalized.

6.7. Possible Extensions 139

〈Program〉 ::= 〈Declare〉 〈System〉 〈Behaviors〉 〈Subjects〉 〈Config〉 〈Goals〉
〈Declare〉 ::= 〈DPermission〉 〈DBehavior〉 〈DKnowledge〉
〈System〉 ::= system 〈Rule〉+

〈Behaviors〉 ::= behavior 〈Behavior〉∗

〈Subjects〉 ::= subject 〈Subject〉+

〈Config〉 ::= config 〈ConfigFact〉∗

〈Goals〉 ::= goal (〈Safety〉 | 〈Liveness〉)∗

〈DPermission〉 ::= permission : 〈DeclarePred〉∗

〈DBehavior〉 ::= behavior : 〈DeclarePred〉∗

〈DKnowledge〉 ::= knowledge : 〈DeclarePred〉∗

〈DeclarePred〉 ::= 〈PredLbl〉 “/” 〈Arity〉
〈Behavior〉 ::= 〈BehaviorID〉 “{” 〈Rule〉∗ “}”

〈Rule〉 ::= 〈Body〉 “=>” 〈Head〉 “;”
〈Body〉 ::= 〈Pred〉∗

〈Head〉 ::= 〈Pred〉+

〈Pred〉 ::= (〈VarID〉 “:”)? 〈PredLbl〉 “(”
(
〈VarID〉 (“,” 〈VarID〉)∗

)?
“)”

〈Subject〉 ::= (“?”)? 〈SubjID〉 (“:” 〈BehaviorID〉)?

〈ConfigFact〉 ::= (“?”)? 〈Fact〉

〈Fact〉 ::= (〈SubjID〉 “:”)? 〈PredLbl〉 “(”
(
〈SubjID〉 (“,” 〈SubjID〉)∗

)?
“)”

〈Safety〉 ::= “!” 〈Fact〉
〈Liveness〉 ::= 〈Fact〉

〈Arity〉 ::= [“1”− “9”] [“0”− “9”]∗

〈BehaviourID〉 ::= [“A”− “Z”]+

〈VarID〉 ::= [“A”− “Z”] [“0”− “9”“a”− “z”“A”− “Z”]∗

〈PredLbl〉 ::= [“a”− “z”] [“0”− “9”“a”− “z”“A”− “Z”]∗

〈SubjID〉 ::= [“a”− “z”] [“0”− “9”“a”− “z”“A”− “Z”“.”]∗

The reserved words : declare, permission, behavior, knowledge,
system, subject, config and goal cannot be used as 〈PredLbl〉 or 〈SubjID〉.

Figure 6.13: SCOLL Syntax

140 Chapter 6. The Language SCOLL

Expressing predicate refinement this way can result in a very concise notation of
the system rules. A single rule suffices to model collaborative propagation in capability
systems:

A:may.call(B,+X) B:may.returnCall(+X,+Y)
access(A,B) access(A,+X) access(B,+Y)
=> A:did.call(B,+X,+Y) B:did.returnCall(+X,+Y)

access(B,+X) access(A,+Y)

The variable identifiers X and Y are prefixed with a + sign to indicate that they
range over the extended set that contains not only the subjects but also the element nil
that means “no subject” and the element ⊥ that means: “unspecified” (either a subject
or nil).

When translating to the kernel language, all “+” signs are removed (the scope of
the variables must be reduced to the set of subjects). The rules must then be duplicated
separately for the nil and ⊥ elements and all refinement rules implied by the partial
order must be made explicit.

Before introducing refinement by partial order into the language, it will must be
decided what partial order(s) will be supported and how the partial order will be ex-
pressed. To support a single fixed partial order like the flat semi-lattice in figure 5.6,
the introduction of the nil keyword and a reserved symbol to indicate the ⊥ element
would suffice.

6.7.2 Support for Parenthood and Endowment
The parent-child relation between the subjects can be expressed in the config part,
using a permission predicate declared in the declare part. The system rules can then
express propagation by endowment and behavior (section 5.4.3) using these permis-
sions.

To make sure that the behavior is only taken into account for children that are ac-
tually created, another permission must be declared (e.g. alive/1) and every system
rule must include this permission for every variable in the rule. All these extra predi-
cates and rules will clutter up the SCOLL program. They can distract the user in his
task to safely approximate entity behavior into subjects.

We propose to predefine the permission predicates child/2 and alive/1, the
behavior predicates may.create/2 and may.endow/3, and the knowledge pred-
icates did.create/2 did.endow/3 and was.endowed/2, and the following
implicit and predefined system rules to express propagation by parenthood and endow-
ment:

alive(P) P:may.create(C) child(P,C)
=> access(P,C) P:did.create(C)

P:did.create(C) => alive(C)

P:did.create(C) access(P,X) alive(X) P:may.endow(C,X)
=> access(C,X) P:did.endow(C,X) C:wasEndowed(X)

The child() predicates indicate which subject can create which other subject.
This relation is static and must be expressed in the config part of the program.

6.7. Possible Extensions 141

Every subject that models at least one entity that is alive in the initial configuration
must have the alive permission in the config part.

Preprocessing a SCOLL program that contains at least one occurrence of an alive
permission in the configuration or of a may.create or may.endow fact in the
behavior part, will require the following transformations:

1. For every variable V : add the alive(V) predicate in the body of every rule
that contains the variable V.

2. Add the system rules for parenthood and endowment, given above.

3. Warn the user about the subjects in the subject part that are not alive in the
config part.

6.7.3 Support for Creation and Aggregation
Even with the support of predefined predicates and rules for parenthood and endow-
ment, the user mapping code to SCOLL must at the same time extract behavior, aggre-
gation and the parenthood relation from the code.

It would be better if the user could model the code into behavior in one time (the
creation behavior included), and model the aggregation in another time. This would not
only make it easier to avoid modeling mistakes, but also allow the user to experiment
with the level of detail in the aggregation relation, independent of behavior.

We can separate both aspects if we allow the parent subject to specify the behavior
of the child that is created. Unspecified behavior would be mapped automatically to
unrestricted default behavior.

An extra part in structure of a SCOLL program could be dedicated to express the ag-
gregation relation. In that part, the children that result from successful may.create
behavior of one subject would be associated with a new or an existing subject. By
default, as a safe but crude approximation, every child that gets created would be ag-
gregated into a single subject, regardless of its parent.

6.7.4 Goal Refinements
Goals are expressed as knowledge facts that either must be attainable or should not be
attainable in the KBM that corresponds to the SCOLL program. They express very
simple constraints on the set of knowledge facts that can be reached in the KBM. The
safety properties express an upper bound to propagation (what should not be reached),
while the liveness possibilities express a lower bound to propagation (what should not
be prevented).

More elaborate constraints could be used to express conditional safety properties
and thus define new interesting safety problems on KBMs. The subject will be revisited
in chapter 9, but a definite proposal and implementation is left as future work.

6.7.5 Syntactic Sugar for Predicate Declarations
We expect that the more or less intensive use of the language by a group of users may
spawn suggestions for improving the usability of the declare part using syntactic
sugar. However, to minimize the chance of modeling errors, we advise against making
the declarations optional, even if they can be inferred from the other parts of the SCOLL
program.

142 Chapter 6. The Language SCOLL

The explicitly declared type and arity of a predicate not only allow us to check if
a system rule or a behavior rule is valid, it also allowed us to introduce new types of
rules, without necessarily adding an explicit type system for the rules (Section 6.5.3).

6.7.6 Disjunctions in Rule Bodies

When two or more conditions lead to the same behavior, a behavior rule must be mod-
eled for every one of these condition. An extension of SCOLL could allow disjunctive
conditions, in behavior rules and/or in system rules. The transformation of a rule with
a disjunctive body into multiple rules without disjunction would be straight forward, as
is shown by this example:

(c1,1() . . . c1,n()) or (c2,1() . . . c2,m()) => p()

would be decomposed into:

c1,1() . . . c1,n() => p()

c2,1() . . . c2,m() => p()

6.7.7 Expressing Behavior Restrictions with Negated Predicates

Behavior can be expressed directly, but behavior restrictions can only be expressed in-
directly. In SCOLL, the negation of a predicate cannot be expressed directly: there is
no negation operator. For instance, a conditional behavior restriction can only be ex-
pressed by making sure that all the behavior rules include the complementary condition
in their body.

For example, to express:
special(X) => ¬ may.grantTo(Y,X)

we have to change every rule in the behavior of the form:
condition1(. . .) . . . conditionN(. . .) => may.grantTo(Y,X)

into:
normal(X) condition1(. . .) . . . conditionN(. . .)
=> may.grantTo(Y,X)

An extension of SCOLL could in principle provide this facility as a linguistic ab-
straction, but that would violate the language design rule we derived earlier: that every
condition in a behavior rule should be explicit. Forgetting a condition will only make
the behavior rule fire more easily and still guarantee a safe approximation of the beha-
vior.

6.7.8 Expressing Behavior Conditional on Negated Predicates

KBMs are monotonic : more knowledge never leads to less behavior and more behavior
never leads to less knowledge. The reason is that actual knowledge and behavior facts
in a KBM express the possibility of knowledge and behavior in an actual system that
is safely approximated by the KBM.

6.8. Modeling in SCOLL 143

The impossibility of a knowledge or behavior fact cannot be stated, it can only
be derived as a safety property: if every possibility is taken into account, then what
remains is impossible.

Positive knowledge facts indicate the possibility that the knowledge is attained.
Negative knowledge facts can only indicate the possibility that contradicting know-
ledge is attained. We must be careful not to infer the impossibility of a fact from the
possibility of a contradicting fact. Moreover, at least one of both will be possible: the
fact or the contradiction of the fact.

Consider a behavior rule of the following form:

¬ knowledge(X) => behavior(X)

This rule cannot express behavior() on the condition of not having the relation
knowledge() with X. It can only expresses behavior() on the condition of hav-
ing a relation with X that contradicts knowledge(X). Both knowledge(X) and
¬ knowledge(X) represent possible knowledge. While in every possible execution
of the program these facts exclude each other, their possibilities do not exclude each
other.

Except maybe for static private knowledge (used but not generated by behavior
rules), we advise against the introduction of negated knowledge predicates in the lan-
guage, unless strong support can be provided to the user, that will help him/her avoid
modeling mistakes.

6.8 Modeling in SCOLL

In this section we revisit the relation between the code in a programming language and
its model in SCOLL. This relation is important in both directions. A given program can
be mapped to a SCOLL pattern to analyze and verify its required safety properties and
to suggest changes (additional restrictions) if the requirements are not satisfied. The
results of the analysis in SCOLL (the solutions to the problem declared in the SCOLL
program), are modified versions of the original SCOLL pattern, which must then be
translated back to code in the programming language.

Figure 6.14 gives a schematic overview of the components in the translation pro-
cess. It is not practical to translate to and from the program’s actual operational se-
mantics. Abstract interpretation of the source code to a simplified state machine that
safely approximates the reachable states would be preferred. The authority in the mo-
del can then be defined in terms of predicates about the simplified state. Techniques for
transforming to and from source code will be discussed as future work in chapter 11.

Translations to and from program code may not always be required. SCOLL is a
modeling language that is useful as such, for instance to compare different protection
systems or alternative behaviors, without actually making the translation to or from
code. Even so, the translation in either direction will be important to developers of
secure software.

This work does not include an automatic or semi-automatic translator to or from
any specific programming language, nor does it describe the design principles for such
a translator. That is left as future work. This section will only give an informal in-
troduction to the most important issues developers need to consider when making the
translation manually.

144 Chapter 6. The Language SCOLL

Figure 6.14: Translation between SCOLL and actual code

6.8.1 Modeling Authority Propagation
To analyze boundaries for authority propagation, we need to define first what the enti-
ties are, from the following considerations:

• Entities can have and use permissions and authority.

• Entities can interact with other entities.

• Entities can propagate permissions and authority by interacting with other enti-
ties.

• Entities can often create other entities.

For programs in a pure object oriented language, the object instances are the best
candidates. For procedural languages, the runtime instances of the procedure’s closure
can be chosen.

System rules will be used to express the mechanisms that can cause propagation of
permissions and authority. To construct a valid model, all such mechanisms must be
considered and mapped to a system rule. The mandatory preconditions for a mecha-
nism can be modeled as preconditions in a system rule. Forgetting or relaxing a pre-
condition does not invalidate the model, but can render it less accurate. Forgetting or
underestimating an effect of a mechanism (or a complete mechanism) will render the
model invalid.

If a certain mechanism has mandatory prerequisites the user wants to model, he/she
must find out for each of the prerequisites whether they are permissions or behavior
preconditions.

6.8. Modeling in SCOLL 145

It is easy to recognize the difference: behavior preconditions depend on the code
that will be executed by a programmed entity, while permissions are independent of
such code. If in doubt, consider only entities with completely unrestricted behavior
and ask yourself the question: “Can this precondition be not met and will that prevent
the propagation of authority ?”. If the answer is yes, it means that the precondition is
independent of behavior and is therefore a permission.

Permissions may not be directly accessible to the entity. That is the case for in-
stance, when a runtime entity can only know if it has read permission to a file by ac-
tually trying to read it. This test is not accurate though, because it tests read authority,
instead of read permission. Since permissions do not necessarily guarantee authority,
a failure of the test is not conclusive, unless it is known that the file’s behavior cannot
or will not interfere with the permission. To discover what the actual permissions are
that govern a mechanism for authority propagation, a feasible approach is to start with
a single general access permission and refine it when necessary.

Let us apply the approach to a memory-safe language like Java: what are the me-
chanisms for authority propagation? Objects can send messages to other objects and
pass references as arguments to the message and as return values from the message.
Functions can be invoked with input arguments referring to other functions and objects
and can return such references too. All the references are unforgeable because the lan-
guage is memory safe. Access to a reference is a permission, because whatever the
object’s behavior, it cannot invoke a function it has no reference to and it cannot send
a message to an object it has no reference to.

Concerning the effects of authority propagation, we distinguish again between two
types: permissions and entity knowledge. Both concern the state of an entity, but the
knowledge part is directly accessible by the entity, while the permission part is not.
Everything an entity can possibly learn from its direct involvement in a propagation
mechanism, should be modeled as knowledge that becomes available to the entity to
adapt its behavior. Section 6.8.9 will explain how to model behavior.

The following sections explore several aspects of authority propagation and show
how they affect the system part of a SCOLL program.

6.8.2 Authority Propagation in the Presence of Global State

If a language provides variables with global scope, these variables provide an alterna-
tive mechanism for authority propagation that does not involve invocation or message
sending. Every global variable can act as a channel that can be used by every entity to
propagate access. We can model this mechanism as an extra system rule that does not
require access between the emitter and the collector:

access(A,X) A:may.makeGlobal(X) B:may.useGlobal(B)

=> access(B,X);

The emitter still has the choice about what permission it will emit and the initiator
of an interaction still has the choice about what subject to interact with (if it chooses
not to use the global variables, but only invocation based collaboration). However, a
confinement strategy that depends on interposition of relied-upon subjects with restric-
ted behavior will fail, because the collaborating subjects do not need access to each
other to propagate authority.

146 Chapter 6. The Language SCOLL

6.8.3 Authority Propagation in the Presence of Ambient Authority
Ambient authority is authority that is available to every entity. If a language provides
ambient authority, we can model that as a unary permission, e.g.:

access(A,X) ambient(B) A:may.sendTo(B,X) B:may.receive()
=> access(B,X);
access(B,Y) ambient(B) A:may.getFrom(B) B:may.return(Y)
=> access(A,Y);

Global state is an extreme form of ambient authority, because the set of entities that
can become globally accessible is not restricted. Global state is more permissive than
ambient authority because it can be derived from it by adding the following rule:

globalVar(V) A:may.sendTo(V,X) => ambient(X)

From this example we learn that we can consider a partial order of permissiveness
between systems: if one system can always be expressed in SCOLL with a subset of
the system rules of another system, the latter system is more permissive.

6.8.4 Authority Propagation via Channels
The multi-paradigm programming language Oz has logic variables and stateful cells.
Entities that interact with each other can not just propagate access to other entities by
invocation, but can also share mutable cells or logic variables that establish a channel
for propagation without invocation.

We can model this form of propagation by modeling channels as subjects and in-
troducing a may.channel/1 behavior predicate to indicate channel behavior, the
may.putOn/3 and may.getFrom/2 behavior predicates for the behavior that uses
the channel. In the example rules, the knowledge predicates are not considered.

access(A,C) access(A,X) A:may.putOn(C,X) C:may.channel()
=> access(C,X);
access(A,C) access(C,X) A:may.getFrom(C) C:may.channel()
=> access(A,X);

We can drop the extra rules and only use invocation based rules, if we model using
a channel as just another form of invocation. The channel’s behavior can be modeled
as a passive subject that never initiates an interaction, but always emits and collects as
a responder to an interaction.

6.8.5 Authority Propagation and the Principle of Attenuation
The principle of attenuation states that: “No subject should be able to delegate rights
(permissions) it does not have”. Since the holder of a permission is indicated as the
first argument of a system knowledge predicate, we can express this principle as a
restriction on its system rules in SCOLL.

Every system rule that has a permission in the head, should include that same per-
mission (possibly held by another subject) in its body. The formal requirement is given
in definition 27.

6.8. Modeling in SCOLL 147

Definition 27. Attenuation
A kernel SCOLL system rule respects attenuation if and only if it has the form:
condition1 . . . conditionn => permissionp(C1,A2,. . .,Am)
and the head is included in the body of the rule, modulo its first argument variable:
∃ 1 ≤ i ≤ n : conditioni = permissionp(D,A2,. . .,Am)

A SCOLL system part respects attenuation if and only if, after translation into ker-
nel SCOLL, every rule with a permission in the head respects attenuation.

6.8.6 Authority Propagation and the Granovetter Property

In this section we express the principle : only connectivity begets connectivity that was
introduced in section 4.3.4. It is a stronger version of the attenuation principle, which
adds the restriction that delegation is only possible between two entities if one of them
has access to the other one.

The principle is sometimes referred to as the Granovetter property. Granovetter
was a sociologist who studied the evolution in the topology of interpersonal relation-
ships, as people introduce people they know to each other. In a generalized form, inde-
pendent of the actual permission used in capability systems, this principle is formalized
in definition 28.

Definition 28. The Granovetter Property
A kernel SCOLL system rule respects the Granovetter property if and only if it has the
form:
condition1 . . . conditionn => permissionp(A1,A2,. . .,Am)
∃ 1 ≤ i ≤ n : conditioni = permissionp(D,A2,. . .,Am)
and ∃ 1 ≤ k ≤ n : (conditionk = permissionq(A1,. . .,D,. . .)

or
conditionk = permissionq(D,. . .,A,1,. . .))

A SCOLL system part respects the Granovetter property if and only if, after translation
into kernel SCOLL, every rule with a permission in the head respects the Granovetter
property.

It is clear from this definition that a system with global variables (Section 6.8.2)
does not respect the Granovetter property, while the system of section 6.8.4) that sup-
ported channels does.

6.8.7 Authority Propagation and Collaboration

To allow us to build a confinement strategy based on the restricted behavior of relied-
upon subjects, the system has to consult the behavior of every entity that is involved in
authority propagation.

Examples of such strategies will be given in chapter 8.
We can define collaboration formally as a property of SCOLL systems, if we in-

terpret the “involvement” of a subject to mean: one of its permissions is required as a
precondition for authority propagation.

148 Chapter 6. The Language SCOLL

Definition 29. Collaborative Systems
A kernel SCOLL system rule consults behavior if and only if it has the form:
pred1 . . . predn => predn+1

such that ∀1 ≤ i ≤ n + 1 : predi = permissionp(A1,A2,. . .,Am)
⇒ ∃ 1 ≤ j ≤ n : predj = behaviorj(A1,X2,. . .,Xl)

A kernel SCOLL system rule respects choice if and only if it has has the form:
pred1 . . . predn => predn+1

such that ∀1 ≤ i ≤ n + 1 : predi = permissionp(A1,A2,. . .,Am)
⇒ ∃ 1 ≤ j ≤ n : predj = behaviorj(A1,. . .,X,. . .)

and ∃ 2 ≤ k ≤ m : X = Ak

A SCOLL system part is collaborative if and only if, after translation into kernel
SCOLL, every rule respects choice.

6.8.8 Modeling Authority Propagation in Capability Systems

We have described the characteristics of object capability systems in section 4.3. The
characteristics can be expressed as constraints on the system rules in SCOLL, which
can in turn be used to check if the modeled system indeed implements a capability
system.

Two kinds of constraints were mentioned in section 4.3.4. The first one is about
making sure that enough permissions are required: only connectivity begets connectiv-
ity. The second one requires the behavior of the subjects to be consulted in a way that
allows them to make the appropriate decisions. The emitter chooses what authority it
will emit and the initiator chooses what subject it will interact with.

These constraints can now be formalized, combining collaborative systems with
the Granovetter property:

Definition 30. Object Capability Systems
A SCOLL system part models object capabilities if and only if:

1. it respects the Granovetter property

2. it is collaborative

6.8.9 Modeling Behavior

SCOLL allows the user to express approximate behavior per rule. To model an entity’s
behavior, the developer only has to safely approximate every statement or method as a
separate behavior rule.

To safely approximate an entity’s behavior :

• Every statement in the entity’s code that can propagate authority must be mod-
eled by at least one behavior rule. Multiple statements can be mapped into a
single behavior rule though.

• The head of the behavior rule must specify behavior that is an over-estimation of
the behavior expressed in the statement.

6.9. Example : Inescapable Interposition 149

• The body of the behavior rule must be a condition that is an under-estimation
(weaker, easier to meet) of the precondition for the statement in the entity’s code.
It is always safe to drop the condition in the rule, because that will be interpreted
as always true.

• Multiple statements can be mapped to the same rule if the preconditions for the
statements separately imply the preconditions of the rule and if the postcondi-
tions of the rule imply the postconditions of the statements.

• Multiple entities can be modeled by the same subject, using the technique of
aggregation. The behavior of this subject then contains (a safe approximation
of) the union of all behavior rules that would be modeled separately. For in-
stance, if one of the entities has access to itself and emits itself as a responder,
the aggregated subject should do so too.

• When entities are aggregated into a subject, the config part (representing the
initial configuration) should contain knowledge predicates that reflect the initial
knowledge of and about all the entities, as knowledge of and about the aggregated
subject. A very easy and practical us of aggregation is to model all offspring that
can ever be created by an entity together with the entity itself as one subject.

• If in doubt, model the entity as an unrestricted or unknown subject, either by
making a single behavior rule with an empty body that generates all possible
behavior predicates, or simply by not stating the subject’s behavior at all and
using the safe default behavior instead.

6.9 Example : Inescapable Interposition
This section gives a first complete example of a SCOLL program, modeling a capability
system. More will follow in chapter 8. The example is chosen because it shows how
an appropriate application of aggregation can help to attain a safe, simple, and accurate
model.

6.9.1 Overview
This example expresses a safety problem. Four entities and their offspring are involved.
Two of them, alice and bob, have behavior we do not want to rely on. The other two,
proxyAlice and proxyBob, have to keep the former two from getting direct access
to each other. We will call alice and bob unknown because there is no behavior
restriction we can (or want to) rely on that we will model in our SCOLL pattern.

We can assume that alice and bob are not connected to each other because our
language allows us to load both entities without providing them any (ambient) autho-
rity. In the initial configuration, both unknown subjects have access to the other one’s
proxy: bob to proxyAlice and alice to proxyBob. The proxies have access
to their target initial knowledge about their target: proxyBob’s target is bob and
proxyAlice’s target is alice. All have access to themselves. The initial access
graph is shown in figure 6.15.

The behavior of proxyBob should forward all messages to bob, but make sure
that only data passes directly. If alice has a capability, e.g. access to a subject a1,
and she wants to pass it to bob, she has to use proxyBob to forward it. The proxy to
bob will not simply pass that capability on to bob, but do the following:

150 Chapter 6. The Language SCOLL

alice

proxyBob

bob

proxyAlice

Figure 6.15: The initial configuration for the example

1. create a new entity proxyA1 with the same proxy behavior.

2. endow it with access to a1 and with knowledge that a1 is its target

3. forward proxyA1 to bob (instead of forwarding a1 to him).

The same goes when bob returns a value for proxyBob to return to alice. Also,
in the other direction, when bob wants to emit or collect a capability to/from alice,
proxyAlice will always first wrap all its arguments.

The code for the relied-upon subjects proxyAlice, proxyBob, and their off-
spring is shown in figure 6.16.

Function MakeProxy takes a target entity (procedure) as input, and makes a for-
warder to that entity. The procedure is assumed to take a single message argument:
a record of the form label(x:X ... z:Z). The message format is checked to be
conform.

The proxy will actually forward another message of the same form, but with un-
bound logic variables: label(x:_ ... z:_), that was constructed with the function
Record.clone. Then, in a series of parallel threads (the Mozart implementation of
Oz has very light threads), the procedure waits for the invoker or the responder to bind
the variables (testing by Record.waitOr will cause the thread to block until at least
one of the variables is bound).

If the argument is bound to an integer, the corresponding variable is bound to the
same integer. If the argument is bound to a procedure, a new proxy is created that will
target the procedure, and is bound to the corresponding variable in the other message.

Whether a position in the message is used for input or output of the message will
be up to the unknown entities. A complete series of proxies can be chained like this,
but the variables will always be bound by the unknown entities, or they will be left
unbound, but then both entities will have different (not unified) logical variables in the
message.

The Target variables for ProxyAlice and ProxyBob will be modeled as initial
permissions access(proxyAlice,alice) and access(proxyBob,bob) and

6.10. Evaluation 151

as initial private knowledge proxyAlice:target(alice) and
proxyBob:target(bob).

The untrusted entities alice and bob get initial permissions:
access(bob,proxyAlice) and access(alice,proxyBob).

The language is relied upon to not provide ambient authority for MakeUnknown
instances and thereby prevent them form sharing static variables.

The procedure propagating behavior of the proxies is to wrap every input procedure
value in a forwarder before making it available to the target, and to wrap every output
procedure value before making it available to the sender of the message.

Important: Notice that no unbound variables are shared ever between the sender
and the target of the message. Doing so would create a direct communication channel
between them, which has to be avoided.

The proxies create only new proxies, thereby endowing them with a target that is
provided by the sender or by the receiver of the message. The procedure values that
Bob binds to an input or output argument in a message to or from ProxyAlice, will
be wrapped in a proxy that targets that value. The same goes for Alice.

6.9.2 Aggregating by Clan and by Target
Both unknown subjects have the possibility to create offspring at will and to introduce
their offspring to each other, and to pass them over to the other clan, wrapped in a
proxy instance. To approximate the whole program with a finite set of subjects, we
need to aggregate most of them. Even after one invocation that involves wrapping the
input and output arguments, the configuration already doubles in size, as is shown in
figure 6.17.

Fortunately, the most appropriate way to aggregate the entities is not hard to find. It
is indicated by the grayed areas in figure 6.17: first aggregate the unknown entities with
their offspring (clan) and then aggregate the proxies according to their (aggregated)
target.

Let us find out first what the aggregation implies in terms of behavior. Aggregating
the behavior of unknown subjects with their offspring is never a problem, because they
already have maximal unrestricted behavior and their offspring cannot add anything
to that. The proxies have restricted behavior, but we can rely on them to create only
offspring with behavior that is restricted in the same way.

We have to check what the aggregation means in terms of initial knowledge and
permissions. The access configuration is simple, as we start the configuration with no
offspring. The parent child relation can be directly derived from the aggregation: the
unknown subjects are their own child, the proxy subjects are each other’s child.

Figure 6.18 shows the SCOLL program. The aggregation relation is reflected in
the child() facts of the initial configuration. The only goal of the program is: make
sure that no instance of the alice clan ever gets direct access to an instance of the
bob clan, or vice versa.

The SCOLL program in figure 6.18 describes a safety problem. The result of the
safety problem will be shown in chapter 8.

6.10 Evaluation
Let us check if SCOLL lives up to the expectations we listed in section 6.1.

152 Chapter 6. The Language SCOLL

declare

fun{MakeProxy Target}
proc{$ Msg}

if {List.all {Label Msg}|{Arity Msg}
fun{$ A} {IsAtom A}
end}

then
NewMsg = {Record.clone Msg}

in
{Target NewMsg}
{Record.zip Msg NewMsg
fun{$ X Y}

thread
V1 V2 in
case {Record.waitOr X#Y}
of 1 then V1=X V2=Y
[] 2 then V1=Y V2=X
end
if {IsInt V1} then V1 = V2
elseif {IsProcedure V1}
andthen {ProcedureArity V1}==1
then V2 = {MakeProxy V1}
end

end
end
_}

else raise messageNotConfom end
end

end
end

[MakeUnknown] = {Load [´x-oz://untrusted/unknown.ozf´]}

Alice = {MakeUnknown [ProxyBob]}

Bob = {MakeUnknown [ProxyAlice]}

ProxyAlice = {MakeProxy Alice}

ProxyBob = {MakeProxy Bob}

Figure 6.16: Oz-E code for the proxy’s behavior

6.10. Evaluation 153

Figure 6.17: The configuration after a single invocation: grayed areas indicate which
entities will be aggregated.

154 Chapter 6. The Language SCOLL

declare
permission: access/2 child/2
behavior: may.sendTo/3 may.getFrom/2 may.return/2

may.receive/1 may.endow/3
knowledge: did.sendTo/3 did.getFrom/3 did.return/2

did.receive/2 was.endowed/2
system

/* invoker emits */
access(A,B) access(A,X) A:may.sendTo(B,X)
B:may.receive()
=> access(B,X) A:did.sendTo(B,X) B:did.receive(X);

/* invoker collects */
access(A,B) access(B,X) A:may.getFrom(B)
B:may.return(X)
=> access(A,X) A:did.getFrom(B,X) B:did.return(X);

/* parenthood */
child(P,C) => access(P,C);
/* endowment */
child(P,C) access(P,X) P:may.endow(C,X)
=> C:was.endowed(X);

behavior
FWDR{

was.endowed(T) => target(T);
=> may.receive();
target(T) => may.getFrom(T);
did.receive(X) child(C) target(T)
=> may.endow(C,X) may.sendTo(T,C);
did.getFrom(,X) child(C)
=> may.endow(C,X) may.return(C);}

subject
alice bob
proxyAlice:FWDR proxyBob:FWDR

config
access(alice,alice) access(alice,proxyBob)
access(bob,bob) access(bob,proxyAlice)
access(proxyAlice,proxyAlice) access(proxyAlice,alice)
access(proxyBob,proxyBob) access(proxyBob,bob)
target(proxyAlice,alice) target(proxyBob,bob)
child(alice,alice) child(bob,bob)
child(proxyAlice,proxyBob) child(proxyBob,proxyAlice)

goal
!access(bob,alice) !access(alice,bob)

Figure 6.18: The SCOLL program expressing the safety problem

6.10. Evaluation 155

1. The structure of the language allows developers to describe the different aspects
of a problem in six separated parts. It encourages the reuse of common parts and
the exploration of the effects of varying every part independently from the other
parts.

2. The interdependencies between the different parts are simple, unambiguous, and
completely described for the kernel language in section 6.2. They are adapted
slightly for the full SCOLL language (Section 6.5).

3. When expressing a programmed entity’s behavior restrictions in SCOLL, the
most important errors are the ones that compromise the validity of the model as a
safe approximation of the effects of interaction between the entities. Therefore,
the easiest way to approximate a programmed entity’s behavior should be the
safest way.

The easiest way to express behavior in SCOLL is to :

• either provide behavior rules with empty bodies to express unconditional
behavior,

• or declare the subject without a behavior description to assign the default
behavior (see section 6.5.4).

4. Improving the accuracy of the modeled behavior should never lead to an under-
estimation of an entity’s behavior.

The refinement rules were introduced in SCOLL to meet this objective (Section
6.5.3). Possibilities for further refinement support were introduced and presented
as future work in section 6.7.1.

5. The language should allow the user to refine a subject’s behavior, without having
to adapt the behavior of the other subjects. It should encourage an iterative and
incremental approach to behavior refinement, starting from crude safe approx-
imations and refining behavior predicates only when the results fail to indicate
that a pattern is safe.

The refinement rules in SCOLL realize this objective (Section 6.5.3). They avoid
the need for adapting the behavior rules of subjects whose behavior does not
change, even when new behavior and knowledge predicates are introduced and
new system rules are expressed that handle these predicates.

6. The language should provide flexible support for aggregation.

The example in section 6.9 shows how aggregation can be used in an intuitive
way. However, as indicated in sections 6.7.2 and 6.7.3, we think future work
in this area may considerably improve SCOLL in this respect. It would greatly
enhance the language’s potential to perform elaborate experiments if the aggre-
gation relations could be expressed explicitly and the parent-child relations could
be expressed independently from the aggregation relations.

Chapter 8 contains several elaborate examples of problems expressed in SCOLL,
including their solutions, and gives an indication of the practical usability of SCOLL.

Chapter 7

Pattern Analysis with
SCOLLAR

This chapter is an introduction to the SCOLLAR tool. It self contained for all practical
purposes, with the exception of the SCOLL syntax that was described in section 6.6.
SCOLLAR is a tool for safety analysis that implements the SCOLL language. Where
necessary, parts and concepts of the previous chapter are revisited from a practical point
of view, often less formal but equally precise and clarified with ready-to-use examples.

Where chapter 6 focussed on the formal aspects of the SCOLL language used to
specify patterns of collaborating subjects, this chapter will approach the language and
its implementation from the user’s point of view and concentrate on how SCOLLAR is
to be used and what results can be expected.

The last two sections of this chapter (Sections 7.6 and 7.7) explain the overall de-
sign of the tool and its implementation based on Constraint Programming [Sch02] in
Mozart/Oz [Moz03].

7.1 Overview
SCOLLAR is a tool to analyze safety in patterns of collaborating entities (subjects) and
can be used for several purposes:

1. To check if a given pattern guarantees a set of safety properties without necessa-
rily preventing another set of liveness possibilities.

For instance, subject alice should never get access to subject bob (safety) but
there should at least be one possible scenario in which bob gets access to alice
(liveness possibility) .

2. To search for (all) safe ways to restrict the interaction between the subjects in the
pattern, such that:

• No safety property is violated

• No liveness possibility is prevented

• Every set of restrictions (solution) is minimal for safety: adding a restric-
tion is not necessary, removing a restriction will break at least one safety
property.

157

158 Chapter 7. Pattern Analysis with SCOLLAR

The user will indicate what restrictions can actually be imposed. Typically, the
restrictions affect the behavior of the subjects the user can rely on or control
and/or the initial configuration of the pattern.

Using SCOLLAR in this way is most useful when designing and programming
secure patterns of interaction between relied upon and some untrusted (unknown)
subjects.

The intention and use of both modes will be explained further in section 7.2.

7.1.1 Most Important features
SCOLLAR’s most important features are:

1. Behavior and permissions are equally important.

Authority propagation is not just a matter of how permissions are distributed in
the initial configuration (who has the right and the ability to use what in what
way) but must also take the behavior of the subjects into account (who is willing
to use what permission in what circumstances).

Both can be specified with equally expressive power.

2. Behavior is based on knowledge:

Behavior is the intention of a subject to do something. A subject can use its
knowledge (about itself and other subjects) to decide to be more collaborative in
the propagation of authority. Knowledge is both a prerequisite for and a result of
successful authority propagation.

Subjects describe their intentions as a set of subject rules that generate behavior
from their knowledge. The effects of subject interaction that are visible to a
subject correspond to knowledge.

3. Subject interaction is mediated explicitly by a system:

Ultimately, the rules that decide what conditions lead to what effects are the same
for every subject. These rules are modeled explicitly as system rules. System
rules, like subject rules, are parameterized by subject variables.

The system rules decide what knowledge can become available to itself and to
the subjects. If such a rule is conditional on the behavior of at least two subjects,
it is said to be a collaboration rule.

4. Safe but Precise Approximation

The general problem of precisely calculating if a configuration in a system can
lead to the violation of a safety property is not computable. Harrison, Ruzzo and
Ullman [HRU76] proved this in 1974 by showing how every Turing machine
defines a safety problem that is safe exactly when the Turing machine will come
to an halt. In 1936, Turing proved that the halting problem for Turing machines
is not computable [Tur37].

We only consider the maximally possible behavior of the subjects. The subject
rules and system rules should be monotonic. More knowledge will make more
behavior possible and more behavior can only generate more knowledge. This
makes our model a safe approximation of the actual problem.

7.1. Overview 159

We will only consider a finite set of subjects, each possibly representing the
behavior and knowledge of an infinite number of entities. This technique makes
the safety problems in our safe approximation tractable. The formal proof that
aggregation results in a safe approximation was given in section 5.7.4.

Within the limits stated above, the approximation can be arbitrary precise. If
an approximative model is too crude, one can always refine the system rules to
make them generate more precise knowledge from more precise conditions, so
that behavior can also be expressed with improved precision.

For instance, a pattern using binary predicate of the form:

access(Subject1,Subject2)

could add an extra predicate to specify how this access was attained :

Subject1:did.getAccessFrom(InvokedSubject,Subject2).

This is knowledge informs Subject1 that it has invoked InvokedSubject,
who returned Subject2.

The latter predicate is denoted in an alternative form, specified in section 5.3.2.
We position the first argument in front of the label, followed by a colon. Instead
of the normal notation b(S1, . . . ,Sn), we write: S1:b(S2, . . . ,Sn).

This notation underlines the fact that it is Subject1’s behavior or knowledge
we are talking about. The alternative notation is not used for permissions, be-
cause permissions are managed only by the protection system.

7.1.2 Restrictions Suggested By SCOLLAR

When looking for solutions that respect the user’s safety and liveness requirements,
SCOLLAR can suggest two kinds of restrictions to the pattern that was given by the
user: behavior restrictions and configuration restrictions.

When searching for minimal sets of restrictions, SCOLLAR will, at least in princi-
ple, check all combinations of these restrictions and only report the minimal sets that
guarantee the safety and liveness requirements the user has specified. The actual al-
gorithm is smarter and uses constraint programming to avoid having to check every
combination separately. It will be described in section 7.6.

The two kinds of restrictions are:

1. Restrictions in the maximal behavior of one or more subjects.

If the user wants to search for the necessary restrictions in the behavior of a sub-
ject, he/she should turn the subject into a search subject. To that end the subject’s
name must be preceded by the “?” sign in the subject part of the pattern descrip-
tion. SCOLLAR will then try to maximize the behavior of all search subjects.
Instead of saying that SCOLLAR searches for minimal sets of behavior restric-
tions, we often also say that SCOLLAR searches for maximal sets of optional
behavior facts.

If the user assigns behavior to a search subject, SCOLLAR will interpret it as a
lower bound for the subject’s behavior.

160 Chapter 7. Pattern Analysis with SCOLLAR

2. Restrictions in the initial configuration.

Every pattern has an initial configuration, which will typically contain initial
permissions and/or knowledge for the subjects. To indicate that these initial facts
are optional and should be tested by SCOLLAR, they have to be preceded with
a “?” sign.

SCOLLAR will then calculate the maximal subsets of optional configuration
facts that do not contradict the user’s requirements.

Note that SCOLLAR will merge both kinds of restrictions into one set to be mini-
mized (optional facts to be maximized), because they are inter-dependent. Imposing a
restriction of one kind may very well undo the need to impose a restriction of the other
kind.

7.2 Different Ways to use SCOLLAR for Safety Analy-
sis

SCOLLAR can be used in two operation modes:

• Fixpoint Computation Mode

• Solutions Mode

7.2.1 Fixpoint Computation Mode
In this mode, SCOLLAR computes the maximal propagation of authority starting from
a given configuration. Authority is presented by knowledge facts. Knowledge facts
are either subject knowledge facts or system knowledge facts. System knowledge facts
represent influence that is exerted on the system and correspond to permissions. Subject
knowledge facts represent influence that is exerted on a subject and correspond to the
subject’s state.

This mode is a simple fixpoint calculation. The system rules and behavior rules are
instantiated over the set of subjects and iteratively applied, starting from the knowledge
available in the initial configuration until no new facts can be derived. Because the rules
are monotonic and the number of derivable facts is finite, such a fixpoint is always
reached in polynomial time.

The optional subject behavior facts and configuration facts can be:

• either all disregarded : when computing the “minimal fixpoint”

• or all taken into account : when computing the “maximal fixpoint”.

The result is shown on a separate web page (Figure 7.1), containing an access graph of
the configuration and a table for every subject.

The access graph is derived from the access/2 permissions, if such a permission
predicate is declared. Otherwise, no graph is shown. The access graph of the initial
configuration is presented with solid arcs. The extra access permissions in the fixpoint
are presented with dashed arcs.

In the table, reachable facts are presented as 1, unreachable fact as 0. The columns
represent the subject in the last argument of a fact.

7.2. Different Ways to use SCOLLAR for Safety Analysis 161

alice

bob

carol

alice alice
bob

carol
access(alice,) 1 1 1
alice:did.receive() 0 0 0
alice:did.return() 1 1 1
alice:did.getFrom(alice,) 1 1 1
alice:did.getFrom(bob,) 0 1 1
alice:did.getFrom(carol,) 0 1 1
alice:did.sendTo(alice,) 0 0 0
alice:did.sendTo(bob,) 0 0 0
alice:did.sendTo(carol,) 0 0 0
alice:may.receive() 1
alice:may.getFrom() 1 1 1
alice:may.return() 1 1 1
alice:may.sendTo(alice,) 0 0 0
alice:may.sendTo(bob,) 0 0 0
alice:may.sendTo(carol,) 0 0 0

bob alice
bob

carol
access(bob,) 0 1 1
bob:did.receive() 0 1 1
bob:did.return() 0 1 1
bob:did.getFrom(alice,) 0 0 0
bob:did.getFrom(bob,) 0 1 1
bob:did.getFrom(carol,) 0 1 1
bob:did.sendTo(alice,) 0 0 0
bob:did.sendTo(bob,) 0 1 1
bob:did.sendTo(carol,) 0 1 1
bob:may.receive() 1
bob:may.getFrom() 1 1 1
bob:may.return() 1 1 1
bob:may.sendTo(alice,) 1 1 1
bob:may.sendTo(bob,) 1 1 1
bob:may.sendTo(carol,) 1 1 1

carol
alice bob carol

access(carol,) 0 1 1
carol:did.receive() 0 1 1
carol:did.return() 0 1 1
carol:did.getFrom(alice,) 0 0 0
carol:did.getFrom(bob,) 0 1 1
carol:did.getFrom(carol,) 0 1 1
carol:did.sendTo(alice,) 0 0 0
carol:did.sendTo(bob,) 0 1 1
carol:did.sendTo(carol,) 0 1 1
carol:may.receive() 1
carol:may.getFrom() 1 1 1
carol:may.return() 1 1 1
carol:may.sendTo(alice,) 1 1 1
carol:may.sendTo(bob,) 1 1 1
carol:may.sendTo(carol,) 1 1 1

Figure 7.1: The results of calculating a safety problem in SCOLLAR

162 Chapter 7. Pattern Analysis with SCOLLAR

For instance the fact alice:did.sendTo(bob,carol) is presented in the
table of alice, in the row labeled alice:did.sendTo(bob,) and the column
labeled carol.

The user’s safety and liveness requirements are not taken into account when com-
puting a fixpoint. However, the resulting tables do indicate the cells containing a safety
predicate in red and the ones containing a liveness predicate in green.

Results from fixpoint calculations:

1. If the maximal fixpoint is safe and alive (no red cells contain 1 and all green cells
do), then all optional facts can be added to the configuration and the behavior,
without violating the user’s requirements. Consequently, the pattern is safe as it
is and no restrictions have to be applied.

2. If the maximal fixpoint is not alive (there is a green cell that does not contain 1),
then there is no solution that does not violate the user’s liveness requirements.
The required liveness possibilities are prevented by the lack of permissions, ini-
tialization knowledge and behavior.

3. If the minimal fixpoint is not safe (there is a red cell that contains 1), then there
is no solution that does not violate the user’s safety requirements. The required
safety properties are not guaranteed due to the abundance of permissions, initial-
ization knowledge and behavior.

The Fixpoint Computation Mode solves the following problems, defined in section
5.7.2:

• Safety Problems : when only safety properties are required by the user. If the
maximal fixpoint violates no safety requirements, the configuration including all
optional facts is safe. If the minimal fixpoint violates not safety requirements,
the configuration excluding all optional facts is safe.

• Practical Safety Problems : when also liveness possibilities are required by the
user. If the maximal fixpoint violates no safety requirements and prevents no
liveness possibilities, the configuration including all optional facts is safe and
alive. If the minimal fixpoint violates no safety requirements and prevents no
liveness possibilities, the configuration excluding all optional facts is safe and
alive.

7.2.2 Solution Mode
Often the liveness possibilities will be OK in the maximal fixpoint but not in the min-
imal fixpoint while the safety properties are OK in the minimal fixpoint but not in the
maximal fixpoint. Therefore SCOLLAR offers the solution mode to compute maximal
sets of optional facts (minimal sets of necessary restrictions) that provide a solution
conform to the user’s requirements. SCOLLAR will look for those subsets of the op-
tional facts that at the same time:

• prevent all the safety properties that are specified by the user,

• do not prevent any of the liveness possibilities that are specified by the user,

7.2. Different Ways to use SCOLLAR for Safety Analysis 163

• are complete, in the sense that adding another optional fact will break at least
one safety property.

All solutions are presented as columns in a table, the rows of which represent the
optional facts that are forbidden in at least one solution. A row with all zero’s indicates
an optional facts that is absolutely forbidden (in every solution, regardless of the other
optional facts). Optional facts that are absolutely allowed (in every solution, regardless
of the other optional facts) are not shown.

The result is shown on a separate web page (Figure 7.2), containing an access graph
and a table.

alice

bob

carol

Solutions
alice:may.sendTo(bob,alice) 1 1 0 1
alice:may.sendTo(carol,alice) 0 0 0 0
alice:may.sendTo(carol,bob) 1 0 1 1
bob:may.sendTo(carol,alice) 0 0 1 1
bob:may.sendTo(carol,bob) 1 0 1 1
bob:may.receive() 1 1 1 0
bob:may.return((alice) 0 1 1 1

Figure 7.2: The results of calculating a maximization problem in SCOLLAR

The access graph is derived from the access/2 permissions, if such a permission
predicate is declared. Otherwise, no graph is shown. The access graph of the initial
configuration is presented with solid arcs. The extra access permissions that are com-
mon to all solutions are presented as dashed arcs. The extra access permissions that are
present in at least one solution are presented as dotted arcs.

The first row of the table contains a button that, when clicked, will show the selected
solution in a page similar to figure 7.1.

Every solution can be viewed individually as set of tables, one for every subject,
indicating which facts were reached during the computation. This table presents the
facts reached concerning a subject as 1, facts that were detected to be unreachable as
0, and facts that were either not reached or not considered as an underbar character ().

For the optional facts (behavior and/or knowledge) a fact indicated as must be
interpreted as not relevant and therefore equivalent to 1, because it does not have an
influence on the safety or liveness properties anyway. For the non-optional facts, must

164 Chapter 7. Pattern Analysis with SCOLLAR

be interpreted as not reached during the computation, which is of course different from
reached (1) as well as from unreachable (0).

The Solution Mode solves the following problems, defined in section 5.7.2:

• Behavior Maximization Problem : when all optional facts are behavior facts,
this mode will calculate maximal subsets of these facts that can be generated by
the corresponding subject(s) without violating any required safety properties and
without preventing any required liveness possibilities.

• Knowledge Maximization Problem : when all optional facts are knowledge facts
(initial permissions and subject initialization facts), this mode will calculate max-
imal subsets of these facts that can be added to the initial configuration without
violating any required safety properties and without preventing any required live-
ness possibilities.

• Configuration Maximization Problem : when the optional facts include know-
ledge and behavior facts, this mode will calculate maximal subsets of all optional
facts, regardless of their nature. In every solution set, the behavior facts can be
generated by the corresponding subject’s behavior and the knowledge facts can
be added to the initial configuration without violating any required safety pro-
perties and without preventing any required liveness possibilities.

7.3 Describing SCOLL Patterns
This section describes the basics about how the SCOLL language is used in practice to
input patterns in the SCOLLAR tool. We describe here the version of SCOLLAR that
very closely corresponds to the version of SCOLL described in chapter 6.

SCOLL programs (also called SCOLL patterns) describe a set of subjects that in-
teract and propagate authority by interacting. The user defines what kind of interaction
is considered, what the preconditions for successful interaction are, and what effects it
can have.

The complete SCOLL syntax, described in section 6.6, is supported. The six main
parts of a SCOLL program are accommodated into five input panes in SCOLLAR’s
user interface:

1. The system pane : accommodates the declare and system parts in SCOLL

2. The behavior pane : accommodates the behavior part in SCOLL

3. The subject pane : accommodates the subject part in SCOLL

4. The config pane : accommodates the config part in SCOLL

5. The goal pane : accommodates the goal part in SCOLL

The contents of the system pane can be saved separately. Let us first revisit the
most important SCOLL concepts from chapter 6, focussing on their practical use, and
then explain the practical possibilities offered by the five panes in which a pattern is
described.

Figure 7.3 shows an input page for SCOLL patterns in the online version of SCOL-
LAR in which the five panes can be recognized.

7.3. Describing SCOLL Patterns 165

Figure 7.3: SCOLLAR’s online user interface: the SCOLL input page

166 Chapter 7. Pattern Analysis with SCOLLAR

7.3.1 Predicates and Facts
Apart from the subjects themselves, the most central concepts in SCOLL are the rela-
tions between the subjects. Every relation that is used corresponds to a predicate with
the same arity. A predicate is a Boolean function that indicates if a certain tuple is in
the relation.
We denote a predicate as :

<label>(A,B,...,X)

where <label> names the relation and A ... X are variables ranging over the
subjects. Predicate labels start with a lower case letter, variables with an upper case
letter. For instance:

read(A,B)

is a binary predicate that is true for every pair (A,B) such that A can read B.
In the context of a rule (Section 7.3.3) it is possible to replace a named variable by

an underbar character. That will make sure that the variable is unique among all the
variables used by the predicates in that rule. For instance:

read(A,)

For behavior and knowledge predicates, we use the alternative notation:

A:label(B) instead of label(A,B)

We call an individual tuple a fact. For instance :

access(alice,bob) is a fact. If it is true, it means that alice stands in
the relation access to bob.

The first subject in a fact is called the base subject and has a special status: it is the
subject whose behavior, knowledge, or permission is expressed by the fact. The role of
the base subject is clarified in the next paragraph.

7.3.2 Knowledge and behavior
We distinguish between two kinds of predicates:

Knowledge predicates correspond to relations that are part of the state of the system.
We distinguish between permissions and subject knowledge.

Permissions represent system knowledge: the part of the system’s state that is
used only by the system itself.
For instance, the predicate access(A,B) could be used to indicate that
a subject A has access to a subject B.
The permission keyword in SCOLL indicates the place where the per-
mission predicates are declared.

Subject Knowledge is the part of the system’s state that is available to the base
subject. It expresses knowledge of the base subject, about its relations with
other subjects.

7.3. Describing SCOLL Patterns 167

For instance, the predicate A:did.sendTo(B,X) could be used to indi-
cate to subject A that it has successfully invoked a subject B and passed a
subject X as an input argument in the invocation.
The base subject of a subject knowledge fact is the only subject that can
detect it, when the fact becomes available. Subject knowledge is made
available to the base subject by the system. Private knowledge is subject
knowledge that is generated by the base subject itself.
It is considered good practice to prefix a subject knowledge predicate label
with “did.”, when the knowledge it represents stems from a successful
application of the base subject’s behavior. The motivation for this prefix is
to remind the user of the fact that we are modeling a guaranteed effect of
successful behavior.
The knowledge keyword in SCOLL indicates the place where the non-
private subject knowledge predicates are declared.

Important

In chapters 5 and 6 we used the terms “knowledge” and “knowledge predicate”
as general terms to indicate all kinds of knowledge, because it mapped directly
to the concept on knowledge in Knowledge Behavior Models. In this chapter we
have less use for the general meaning of the term. From now on we will always
use “permission” when we mean system knowledge and “knowledge” when we
mean subject knowledge.

Behavior predicates correspond to relations that express the intention of the base sub-
ject towards the system and towards other subjects. The base subject of a beha-
vior fact is the subject whose behavior is expressed by the fact.

For instance, the predicate A:may.sendTo(B,X) could be used to to express
that subject A is willing to invoke subject B and pass access to subject X as an
input argument in the invocation. It does not imply that A is allowed or able to
realize its intentions.

It is considered good practice to prefix a behavior predicate label with “may.”.
The motivation for this prefix is to remind the reader of the fact that we are
modeling possible behavior.

The following are some guidance rules for modeling relations between entities as
predicates in SCOLL:

• To model the right of an entity to change the state of the system in a certain way,
use a permission predicate.

• To model the right of an entity to interact (collaborate) with another entity in a
certain way, also use a permission predicate.

• To model the internal state of an entity, use a knowledge predicate.

• To express that an entity is willing to perform an action (e.g.: to invoke another
entity with a certain input argument), use a behavior predicate.

• To express that an entity is ready to co-operate in an action (e.g.: being invoked
with a certain input argument, or returning an output argument), use a behavior
predicate.

168 Chapter 7. Pattern Analysis with SCOLLAR

Examples in the remainder of this chapter will clarify the distinction. Section 7.4.1
will explain how to declare the predicates used in a SCOLL program.

7.3.3 Rules
Rules in SCOLL are a mechanism to derive new facts from existing facts. Every rule
has the form of an implication between two conjunctions of predicates.:

P ... Q => R ... S;

where P ... R and R ... S are predicates over a finite number of variables.
Both sides of the implication represent a conjunction of predicates. The left hand

side is called the body of the rule and can be empty. The right hand side is called the
head of the rule and always consist of at least one predicate. For instance, this could
be a system rule:

access(A,B) access(A,C) A:may.introduceTo(B,C)
=> access(B,C) access(C,B) A:did.introduceTo(B,C);

During the execution of a SCOLL program, the rules will be instantiated: all vari-
ables will be substituted for actual subjects. Both sides of every instance of the rule
then represent a conjunction of facts. An instantiated rule is a simple logical implica-
tion: all facts in the right hand side will become true if all facts in the left hand side are
true.

SCOLL rules never rely on the identity of subjects. Although many programming
languages provide some form of identification primitive (like an object equality test),
SCOLL requires that the use of such a facility would be modeled explicitly. Therefore
SCOLL never allows constant arguments (only variables) in the predicates of the rules.

Counter example:

access(A,alice) => access(alice,A); invalid syntax

Good example:

isAlice(X) access(A,X) => access(X,A);

In a future version, SCOLL may provide special binary predicates for this purpose
and allow the use of constants in these two special predicates only:

=(X,Y)
6=(X,Y)

7.4 The Distinct Parts of a SCOLL Pattern
This section describes how the input panes in SCOLLAR are used and how they relate
to the corresponding parts of a SCOLL pattern.

7.4.1 The system pane
This pane combines the two first parts in a SCOLL program:

1. the declare part, in which the predicates are declared

7.4. The Distinct Parts of a SCOLL Pattern 169

2. the actual system part, in which the system rules are given

The keyword declare, that indicates the start of the predicate declaration parts of the
SCOLL program, is dropped here, but the keyword system must be used to indicate
where the system rules start. The declare keyword will be inserted at its proper
place, before the SCOLL program is handed to the parser.

The reason these two parts are combined into one pane is administrative conve-
nience. The combination can easily be reused in other patterns and can be saved sepa-
rately from the rest of the pattern. Both parts may be separated again in a future version
of SCOLLAR.

First, the predicates are declared in their proper section (permission, behavior,
or knowledge, as:
<predicateLabel>, followed by “/” and a strict positive number that indicates
the number of arguments (arity) the predicate takes.

For instance:

permission : access/2

behavior : may.sendTo/3 may.getFrom/2 may.return/2
may.receive/1

knowledge : did.sendTo/3 did.getFrom/3 did.return/2
did.receive/2

The order in which the three predicate declaration sections appear is fixed. Within
every section the order of the defined predicates is arbitrary and has no influence on the
semantics of the program.

Following the predicate declaration, the system keyword is added and the system
part is described as a list of system rules. A system rule can have one of four types:

permission rule : The normal type of system rule that has permission predicates
and/or behavior predicates in its body and permission predicates and/or know-
ledge predicates in its head. Each permission rule models a certain type of (inter-
) action: the conditions that are necessary (permissions and behavior) and the
effects that will result from it (permissions and knowledge).

Example:
access(A,B) access(B,Y)
A:may.getFrom(B) B:may.return(Y)
=> access(A,Y) A:did.getFrom(B,Y) B:did.return(Y);

A’s knowledge A:did.getFrom(B,Y) lets A be aware of its successful colla-
boration with B and of the fact that A gained access to Y from that collaboration.
B’s knowledge B:did.return(Y) tells B that it has returned Y, but it does
not tell B who it returned Y to. The example models invocation (of B by A) in
systems that do not reveal the invoker to the invoked entity, a situation that is not
uncommon in programming languages.

assisting rule: A rule that extends the effects of one or more other rules. It has one
or more knowledge predicates and/or permissions in its body and one or more
permissions and/or knowledge predicates in its head.

170 Chapter 7. Pattern Analysis with SCOLLAR

Example:
A:did.getFrom(B,Y) => access(A,Y) B:did.return(Y);

Assisting rules should be used with caution. As they look very much like the
actual permission rules, they can easily cause confusion about the the actual
propagation mechanisms that are modeled.

knowledge refinement rule: A rule that expresses how knowledge predicates relate to
their refinements. Its body is a single refined knowledge predicate and its head
contains the unrefined knowledge predicate that is implied by it. Such a rule is
useful to support the refinement of an existing pattern that did not use the refined
knowledge before.

Example:
B:did.returnFor(,Y) => B:did.return(Y);
B:did.returnFor0(Y) => B:did.return(Y);

The first rule can be used to express the knowledge that B has returned Y after
making sure that some other subject was provided as input to B in the same
invocation (B:did.returnFor(,Y)), implies the simpler knowledge that
B has returned Y.

The second rule can be used to derive the same general knowledge from the
specific knowledge that nothing was provided as input to B, when it returned Y.

behavior refinement rule: A rule that expresses how behavior predicates relate to
their refinements. Its body is a single unrefined behavior knowledge predicate
and its head contains the refined behavior predicates that are implied by it. Such
a rule is useful to support the refinement of an existing pattern that did not use
the refined behavior before.

Example:
B:may.return(Y)
=> B:may.returnFor0(Y) B:may.returnFor(Y);

This rule can be used to express that if B is willing to return Y regardless of
whether some input is provided in its invocation (unrefined behavior), then B is
also willing to return Y in the specific circumstances when such input is (or is
not) provided.

7.4.2 The behavior pane
The behavior pane (American English spelling) will contain a list of zero or more
behavior declarations. A behavior declaration consists of a behavior identifier and a
list of zero or more subject rules and has this form:

<BEHAVIORNAME> { <rule> . . . <rule>}

The behavior name is a string of all uppercase letters. The subject rules have the
same format as the system rules in section 7.4.1: they are implications between con-
junctions of predicates.

The body of a subject rule contains zero or more knowledge predicates. The con-
junction of these predicates is the precondition for the subject rule to expose behavior.

7.4. The Distinct Parts of a SCOLL Pattern 171

The head of a subject rule contains one or more behavior predicates and/ or private
knowledge predicates. The behavior predicates describe what behavior will be ex-
posed if the preconditions of the rule are satisfied for a given set of subjects.

For instance, here is a simple behavior class:

DISPATCHER {

=> may.receive();

did.receive(X) => may.return(X);}

Important

Notice that the predicates may.receive, did.receive and may.return have
one less argument than was indicated by their declaration in the example of section
7.4.1. The first argument is always dropped in subject rules, for reasons which will be
explained soon.

Subject rules are a monotonic approximation of how subjects of a certain behavior
class decide under what circumstances they want to collaborate in what way. Mono-
tonic means that when more knowledge (preconditions) is available no less behavior
will be generated by the rules. Once a behavior fact has been set to true (derived), it
cannot be set to false again, because the knowledge necessary to generate the behavior
will never disappear.

Private Knowledge

Private knowledge is knowledge that is generated by the base subject, or knowledge
that was given to the subject upon initialization. Private knowledge can also be useful
to combine knowledge the subject has learned during interactions and to represent the
subject’s internal “state”.

Private knowledge predicates are automatically declared the first time they are used
in a behavior declaration. Their scope extends to every behavior rule within that dec-
laration. Upon their first appearance in a behavior declaration, every predicate that is
used in a subject rule and that was not declared in the system pane (declare part),
will be declared automatically as a private knowledge predicate. It will be given the
arity that can be derived from the number of variables used in that occurrence, plus one
to account for the implicit base subject variable.

Why the base subject is implicit in behavior rules.

Subject rules can only use knowledge that is available to the base subject. They specify
the behavior of the base subject. Instead of demanding that every predicate in a subject
rule should have the same base-subject variable, we simply drop the first argument in
the predicate (make it implicit).

However, the reason for making the base-subject implicit is not just simplification.
To understand the importance of implicit base-subjects, consider the following counter
example of a subject rule in which the first argument is explicit:

Counter example subject rule :

=> A:likes(A);

172 Chapter 7. Pattern Analysis with SCOLLAR

This rule would mean that every subject of this behavior class likes itself. Using
this rule makes the following implicit assumptions :

• The real system that is being modeled in SCOLL provides and infallible identifi-
cation facility that allows every subject (or at least every subject of this behavior
class) to differentiate between itself and other subjects.

• The subjects modeled in this behavior always (!) use this identification before
making any decision.

These assumptions are very strong, particularly the second one, and do not hold in
most general. If the first assumption does hold, it should be expressed explicitly in the
system rules, for instance by a system rule like :

=> self(A,A);

If the second assumption also holds, the use of the identification knowledge in a
subject rule should be explicit, for instance:

self(A) => likes(A);

Example of a behavior:
FORWARDER { => may.receive();

did.receive(X) target(T) => may.sendTo(T,X);}
MINIMAL {}

FORWARDER is the behavior for subjects that are willing to receive subjects (e.g.: be
invoked with an input argument) and forward them to their target subject. The ex-
ample assumes that did.receive/2 was declared as a knowledge predicate, that
may.sendTo/3 was declared as behavior predicate, and that target/2 is a private
knowledge predicate that is automatically declared here. It also assumes that the sub-
jects with FORWARDER behavior will be initialized with knowledge about who their
target(s) is (are).

MINIMAL is the behavior for subjects that never collaborate.

DEFAULT behavior

If the name of a behavior class is “DEFAULT”, all subjects declared in the subject pane
that have no behavior assigned explicitly will have this behavior. If the behavior class
DEFAULT is not specified, the default behavior is defined with a single behavior rule
with an empty body and a head that contains all declared behavior predicates :

DEFAULT { => behavior1(,. . .,) . . . behaviorn(,. . .,);}

7.4.3 The subject pane
The subject pane is to contain a list of subject declarations of the form:

<subjectName> : <BEHAVIORNAME>

or, if the subject has DEFAULT behavior:

<subjectName>

The subject name starts with a lower case letter and identifies the subject. The behavior
name identifies the subject’s behavior and must be declared in the behavior pane.

7.4. The Distinct Parts of a SCOLL Pattern 173

Behavior Maximization Option : “?”

A question mark (“?”) can precede the subject name to indicate that SCOLLAR should
maximize the behavior of this subject, using the specified behavior as a lower bound.
Every possible behavior fact which base subject is the declared subject becomes an
optional behavior fact.

Example :

alice : FORWARDER
bob
?carol: MINIMAL

Subject carol is marked with the search flag. That indicates that SCOLLAR
should find solutions that maximize carol’s behavior (in excess of carol’s empty
MINIMAL behavior) while respecting the safety and liveness constraints in the config
pane.

7.4.4 The config pane

The config pane is to contain a list of permission facts, knowledge facts and private
knowledge facts that represent the initial state of the configuration when the system
rules and behavior rules start deriving new behavior and knowledge.

<fact> <fact> <fact> ...

All facts must be instantiations of predicates that are declared, either explicitly in
the system pane, or automatically (as private knowledge) in the behavior declaration
of their base subject. Their arguments must all be subjects that were declared in the
subject pane.

Example :

access(bob,alice) access(alice,carol)
access(bob,bob) access(alice,alice)
access(carol,carol) alice:target(carol)

Configuration Maximization Option

Every configuration fact can be preceded by the “?” mark that turns it into an optional
fact. SCOLLAR will search for solutions that maximally include these optional facts.

Example :

access(bob,alice) access(alice,carol)
access(bob,bob) access(alice,alice)
access(carol,carol) alice:target(carol)
?access(carol,alice) ?alice:target(bob)

The search option in the config pane can be used in combination with the search
option in the subject pane. SCOLLAR will search for solutions that maximally set all
optional facts to true.

174 Chapter 7. Pattern Analysis with SCOLLAR

7.4.5 The goal pane
The goal pane is to contain a list of:

• permission, knowledge and private knowledge facts that represent the liveness
possibilities

• permission, knowledge and private knowledge facts preceded by “!” that repre-
sent the safety properties

When SCOLLAR is searching for solutions it will only report solutions in which
all liveness possibilities are reached and no safety property is reachable.

Example :

access(carol,bob) /* liveness possibility */
!access(bob,carol) /* safety property */

SCOLLAR will search for solutions that guarantee that bob will never have access
to carol, while carol can get access to bob, at least if every subject always uses
its maximal behavior.

IMPORTANT:

SCOLL programs do not model exact behavior, but safe (over-)approximations of be-
havior. Safety properties guaranteed in the approximation will be guaranteed in the
real problem too. However, liveness properties cannot be guaranteed at all, since the
modeled behavior will usually be a strict over-approximation of the actual behavior.

The only use of liveness possibilities, is to require a lower bound to the maximally
possible generation of facts in the pattern.

7.5 SCOLLAR’s Web Based User Interface
SCOLLAR has a browser based user interface. The main page contains the five text
panes that were described in section 7.4 and that allow the user to type the correspond-
ing six parts of the SCOLL pattern (see Chapter 6). This section explains the remaining
interface elements.

7.5.1 SCOLLAR Calculations

This button starts a calculation in the first mode : to compute the set of all facts that are
reachable from the configuration. This set represents an upper bound for the propaga-
tion of authority in the actual problem that was modeled as a SCOLL pattern.

The optional facts specified in the subject pane or in the config pane are not con-
sidered to be part of the configuration.

The result is shown on a separate web page (Figure 7.1), containing an access graph
of the configuration and a table for every subject.

The access graph is derived from the access/2 permissions, if such a permission
predicate is declared. Otherwise, no graph is shown. The access graph of the initial
configuration is presented with solid arcs. The extra access permissions in the fixpoint
are presented as dashed arcs.

7.5. SCOLLAR’s Web Based User Interface 175

Every table presents the reachable facts concerning one subject with 1 and the
unreachable facts as 0. The columns represent the subject in the last argument of
a fact. For instance the fact alice:did.sendTo(bob,carol) is presented in
alice’s table, in the row labeled alice:did.sendTo(bob,) and the column
labeled carol.

This button starts a calculation in the first mode : to compute the set of all facts that are
reachable from the configuration. This set corresponds to the maximal propagation of
authority in the actual problem that was modeled as a SCOLL pattern.

This time, the optional facts specified in the subject pane and in the config pane are
considered to be part of the configuration.

The result is shown on a separate web page, similar to the one for the minimal fix-
point calculation (Figure 7.1).

This button causes SCOLLAR to start calculating all solutions it can find in a prede-
fined time (by default: 30 seconds). SCOLLAR is then used in the second operation
mode to find those sets of optional facts at the same time:

• prevent all the safety properties that are specified in the goal pane,

• do not prevent any of the liveness possibilities that are specified in the goal pane,

• are complete, in the sense that adding another optional fact will break at least
one safety property.

Every solution will list a minimal set of restrictions: optional behavior facts and op-
tional facts in the initial configuration that have to be prevented to guarantee the safety
properties. Only the solutions that do not prevent the liveness possibilities are listed.

The result is shown on a separate web page (Figure 7.2), containing an access graph
and a table.

The access graph is derived from the access/2 permissions, if such a permission
predicate is declared. Otherwise, no graph is shown. The access graph of the initial
configuration is presented with solid arcs. The extra access permissions that are com-
mon to all solutions are presented as dashed arcs. The extra access permissions that are
present in at least one solution are presented as dotted arcs.

The solutions are presented in the columns of the table. Every optional fact that
is to be prevented in at least one of the solutions is presented in a row. The optional
facts that have to be prevented in a solution have a zero in the corresponding cell. The
optional facts that have to be prevented in all solutions can easily be recognized as their
row consists only of zero’s.

The first row of the table contains a button that, when clicked, will show the selected
solution in a page similar to figure 7.1.

Every solution can be viewed individually as set of tables, one for every subject,
indicating the facts as follows:

0 : The optional facts that are not allowed and the facts that were detected to be defi-
nitely unreachable during the calculation.

176 Chapter 7. Pattern Analysis with SCOLLAR

1 : The facts that are reached during the calculation and the optional facts that were
relevant to the calculation and turned out to be allowed.

: The optional facts that are allowed but were irrelevant to the calculation and the
facts that were not reached, either because they were not relevant in the calcula-
tion, or because they were unreachable.

This button is similar to the previous one, but the calculation stops as soon as a first
solution if found.

7.5.2 Saved Patterns

This part of the user interface allows the user to manage examples of complete pat-
terns. You can only save patterns if your browser’s cookies are enabled. The cookie
SCOLLAR creates is called “storageKey” and has a random value assigned to it.

You can only delete or update the patterns you saved yourself with that cookie’s
value. You cannot change or save predefined example patterns, but if you try to, a
personal (private) copy will be made of that pattern.

The availability of the buttons in this section depends on the context and on whether
you have cookies enabled in your browser.

This menu button provides some instructive examples of complete SCOLL patterns.
Choose option “empty” to clear all fields of the current pattern.

The patterns you saved while using your current cookie “storageKey” are also avail-
able, recognizable by the “(*)” prefix. In the current version you cannot use patterns
you saved with another value of the “storageKey” cookie.

This button allows you to save the current pattern under a different name.
Use only alpha-numeric characters for the name of the pattern. Do not use “(*)” to
indicate your own patterns. That information will be derived automatically.

If you use the name of a pattern you saved previously, it will be overwritten without
warning.

If you use the name of a predefined example pattern, your own instance of a pattern
with that name will be overwritten, or one will be created if it does not exist.

“<pattern name>” will contain the name of the pattern you last loaded or saved
This button allows you to save changes to the pattern you last loaded or saved,

under the same name.
If the current pattern is a predefined example pattern, your own instance of a pattern

with that name will be overwritten, or one will be created if it does not exist.

7.5. SCOLLAR’s Web Based User Interface 177

“<pattern name>” will contain the name of the pattern you last loaded or saved
This button allows you to remove the pattern you last loaded or saved.
If the current pattern is a predefined example pattern, your own instance of a pattern

with that name will be removed instead, or nothing will happen if it did not exist.

7.5.3 Saved Systems

This part of the user interface allows the user to manage examples of reusable system
panes for patterns.. You can only save systems if your browser’s cookies are enabled.
The cookie SCOLLAR creates is called “storageKey” and has a random value assigned
to it. The same cookie is used for saving complete patterns.

You can only delete or update the system panes you saved yourself with that cookie’s
value. You cannot change or save predefined example system panes, but if you try to,
a personal (private) copy will be made of that system pane.

The availability of the buttons in this section depends on the context and on whether
you have cookies enabled in your browser.

This menu button provides some instructive examples of reusable system panes for
SCOLL patterns.
Choose option “empty” to clear the system field of the current pattern.

The system panes you saved while using your current cookie “storageKey” are also
available, recognizable by the “(*)” prefix. In the current version you cannot use sys-
tem panes you saved with another value of the “storageKey” cookie.

This button allows you to save the current system pane under a different name.
Use only alpha-numeric characters for the name of the pattern. Do not use “(*)” to
indicate your own system panes. That information will be derived automatically.

If you use the name of a system pane you saved previously, it will be overwritten
without warning.

If you use the name of a predefined example system pane, your own instance of a
system pane with that name will be overwritten, or one will be created if it does not
exist.

“<system name>” will contain the name of the system pane you last loaded or saved.
This button allows you to save changes to the system pane you last loaded or saved,

under the same name.
If the current system pane is a predefined example, your own instance of a system

pane with that name will be overwritten, or one will be created if it does not exist.

“<system name>” will contain the name of the system pane you last loaded or saved.

178 Chapter 7. Pattern Analysis with SCOLLAR

This button allows you to remove the system pane you last loaded or saved.
If the current system pane is a predefined example, your own instance of a system

pane with that name will be removed instead, or nothing will happen if it did not exist.

7.6 Overall CCP-based design
We consider a single constraint store consisting of elementary boolean constraints on
a finite set of variables, whereby the constraint store represents the conjunction of all
these constraints. Every variable corresponds to either a permission fact, a knowledge
fact, or a behavior fact in the (kernel) SCOLL program. In figure 7.4, the store is
represented by the three grayed ellipses.

Figure 7.4: Constraint Store and Propagators

The store contains a variable for every permission fact, knowledge fact, and be-
havior fact that is defined by the set of declared predicates over the set of declared
subjects.

The following two basic operations are defined on a constraint store:

ask(C) : The operation compares the basic constraint C with the constraint store and
blocks until the store is constrained enough to either imply C or imply ¬C.

tell(C) : The operation adds the basic constraint C to the constraint store, unless that
would cause the store to contain contradictory information. In the latter case the
store becomes failed.

From these basic operations, constraint propagators can be constructed. Constraint
propagators consist of two parts:

7.6. Overall CCP-based design 179

1. A (basic or non-basic) constraint that will be compared with (asked to) the con-
straint store. The propagator will block until the constraint is entailed or disen-
tailed by the store.

2. A (basic or non-basic) constraint that will be added (told) to the constraint store
if and when the first constraint is entailed by the store. If and when the first
constraint is disentailed by the store, nothing happens.

In Concurrent Constraint Programming (CCP) all propagators are concurrent: they
block until their preconditions are entailed or disentailed, without blocking any other
constraints. The execution order of the constraints is not important, because CCP is
confluent: the constraint store will always reach the same final state, regardless of the
execution order. For a formal explanation of CCP and its semantics, see [SRP91] or
[FA03]. How constraints are used in Mozart/Oz is explained in [Sch02].

The variables corresponding to the non-optional facts in the config part of the
SCOLL program are constrained to be equal to true. The system rules and the subject
rules are instantiated over all subjects and transformed into constraint propagators that
ask for every variable that corresponds to a fact in their body, whether that variable is
constrained to be true. If and when all these variables are indeed constrained to be true,
the propagator will tell the constraint (V = true) to the store, where V is the variable
that corresponds to the fact in the instantiated rule’s head.

As shown in figure 7.4, the system propagators will ask constraints requiring vari-
ables that correspond to subject behavior and permissions to be constrained to true (in-
coming arrows) and tell constraints that set variables corresponding permissions and
subject knowledge to be true. The subject propagators only ask true-constraints in the
part of the store that corresponds to knowledge facts about that subject (the base subject
of the knowledge fact). The subject propagators only tell true-constraints in the part of
the store that corresponds to behavior facts about that subject (the base subject of the
behavior fact).

Allowing all propagators to run until the store becomes stable, we calculate the fix
points of the SCOLL program (SCOLLAR’s first operation mode).

To calculate a maximal set of optional facts (SCOLLAR’s second operation mode),
we tell basic constraints for every safety property, constraining their corresponding
variable to be false. We then run the propagators starting from a configuration with no
optional facts, wait for the store to become stable, and tell constraints for the optional
facts one by one, constraining them to be true, and waiting until the store becomes
stable before telling the next one.

If instead of becoming stable, the store becomes failed, we constrain the last added
optional fact to be false instead, and we try another one. The store can become failed
when a system rule propagator tells a variable corresponding to a safety property to be
true.

If the store is still stable after all optional facts have been constrained this way (to
either true or false), we check if all the variables that correspond to liveness possibilities
have been constrained to be true in the store. If so we have a solution. If not we
have to try another combination of truth values for the optional facts. A solution will
automatically be maximal, because we always try to constrain the optional facts to be
true first, before trying to constrain it to false.

Because we may have to try all these combinations before finding a solution, the
maximization problems are NP-complete. This claim will be proved in chapter 9. To
improve the performance, more propagators will be added to prune the search space

180 Chapter 7. Pattern Analysis with SCOLLAR

consisting of the truth value combinations of all optional facts and smarter search strate-
gies will be used.

7.6.1 Propagation
The propagators can be derived directly from the system rules and behavior rules in the
kernel SCOLL program. A system rule of the form:

pred1(V1,1,. . .,V1,k) . . . predn(Vn,1,. . .,Vn,m)
=> predn+1(Vn+1,1,. . .,Vn+1,l)

will be instantiated for every possible substitution that maps the variables in the rule
to subjects, replacing the variables in the rule by the corresponding subject in the sub-
stitution. For example, the propagator corresponding to a particular instantiation may
look like:

pred1(alice, . . . , bob) ∧ . . . ∧ predn(bob, . . . , carol)
predn+1(alice, . . . , carol)

(7.1)

In (7.1) the ask part of the propagator is presented on top of the tell part.
The behavior rules are translated in a similar way, but the substitution is somewhat

more involved. After substituting the variables in the rule, the predicates will have to
be extended with an extra first argument that corresponds to the subject whose behavior
is described by the rule.

For instance the unrestricted behavior of a subject dave, described by the SCOLL
subject rule:

=> pred1(. . .) . . . predn(. . .)

will, after having translation of the rule to kernel SCOLL, and after proper substitution,
correspond to a series of propagators of the form:

true

pred1(dave, . . .)
. . .

true

predn(dave, . . .)
(7.2)

7.6.2 Declarative Laziness
When instantiating all rules over all possible subjects substitutions, the number of vari-
ables in the core has the order of magnitude O(sa) where s is the number of subjects
in the SCOLL program and a is the maximum arity of all predicates. The number of
propagators has the same order of magnitude.

Many of the instantiated variables and propagators may never be used, or may not
be relevant to the solution of the safety problem or the maximization problem. To
minimize the overhead, the instantiation of the rules and the variables is done lazily
(on demand).

The Mozart implementation of Oz provides a ByNeed operation that was adapted
to be confluent, as we reported in [SCR03]. A confluent ByNeed can be very useful
in declarative paradigms like constraint programming. We use it to generate constraint
propagators on demand, only if and when they are needed.

Every variable in the constraint store corresponds to a fact pred(. . .). When a
boolean constraint about that variable in the constraint store is asked by a propagator,
all the rules that have the pred(. . .) predicate in their head will be instantiated, but
only for those substitutions that correspond to the fact.

7.6. Overall CCP-based design 181

For instance, consider a SCOLL pattern with four subjects alice, bob, carol,
and dave, and the two following system rules generate access():

access(A,B) access(A,X) A:may.sendTo(B,X) B:may.receive()
=> access(B,X)

access(A,B) access(B,Y) A:may.getFrom(B) B:may.return(Y)
=> access(A,Y)

When a boolean constraint is asked about the variable that corresponds to the fact
access(a,c), both rules will be partially instantiated to generate two instances of
each of the following propagators:

access(s1, a) ∧ access(s1, c) ∧may.sendTo(s1, a, c) ∧may.receive(c)
access(a, c)

(7.3)

access(a, s1) ∧ access(s1, c) ∧may.getFrom(a, s1) ∧may.return(s1, c)
access(a, c)

(7.4)

where S1 ranges over {bob, dave}, a denotes alice and c denotes carol.
To further diminish overhead, the boolean preconditions of a propagator will be

asked one by one. For instance the propagator

access(bob, a) ∧ access(bob, c) ∧may.sendTo(bob, a, c) ∧may.receive(c)
access(a, c)

will first wait for the variable access(bob,alice) to be constrained. When that variable
becomes bound to true, it is will ask for the next one: access(bob,carol), but if it
becomes bound to false, the propagator’s work is done, and no other constraint store
variables need to be asked.

The process of instantiating system rules and behavior rules and transforming them
to propagators is started by asking for the constraint store variables that correspond to
the facts in the goal part of the SCOLL program.

During the search process to solve a maximization problem, every time an optional
fact is bound to false, it will also be asked to make sure that when a SCOLL rule
derives this fact to be true, the constraint store will fail.

In fix point mode, all facts will be asked regardless of the overhead, because the
truth value of all facts must be derived, not only of the facts that can be relevant to infer
the truth value of a goal fact. Because the computation is done only once in fix point
mode, the overhead is not that important.

7.6.3 Closed World Propagators
Consider a maximization problem in a SCOLL pattern with subjects {alice, bob,
carol, dave}, where the propagators that can tell access(alice, carol) are defined
as in (7.3) and (7.4), for s1 ∈ {bob, dave}. Only these four propagators can cause the
variable access(alice, carol) to become true.

If all four preconditions of these propagators become constrained to be false and
access(alice carol) is not an initial fact in the config part of the SCOLL
program, no other propagator can cause access(alice, carol) to be come true. In that
case, the constraint store entails that access(alice, carol) is false.

182 Chapter 7. Pattern Analysis with SCOLLAR

Upon instantiating the four propagators that can tell access(alice, carol) = false,
in case access(alice carol) is not in the config part, a fifth propagator will
be created that asks if the disjunction of these four conditions is false and then tells:
access(alice,carol) = false.

This extra propagator closes the world of possibilities for the fact to become true.
That is useful because it can cause early detection of failure by telling liveness possi-
bilities to become false.

Because of the closed world propagators, during the search process to solve a max-
imization problem, the optional facts will no longer only be asked when they are bound
to false, but also when they are bound to true to make sure that, when a closed world
rule derives this fact to be false, the constraint store will fail.

The use of closed world propagators does not guarantee that the store will either
fail or be completely bound. Variables that are asked may remain unconstrained when
neither the rule-generated propagators nor the closed world propagator can tell.

Even when using closed world propagators and all optional facts have been as-
signed a truth value and the store is stable, the store is still not guaranteed to represent
a solution, because a liveness property may not be constrained to either true or false.
The store only contains a solution if all liveness properties are constrained to true.

7.6.4 Distribution
When searching for maximal sets of optional facts that can be constrained to true
without violating the safety properties (without making the store fail), we assign a
truth value to them, one by one and wait for the store to become stable.

In this process, two phases are alternated:

Propagation : The propagators tell constraints until the store is stable.

Distribution : A constraint is added to the store, about an optional fact that is not yet
constrained in the store.

The propagation phase was explained in section 7.6.1. During the distribution
phase, two decisions must to be made:

1. What optional fact will be constrained next.

2. How will the fact be constrained.

To improve the chances of early detection of failure, we will first constrain the
optional facts that were asked for by the largest number of propagators. To make
sure that we find a maximal solution, we always constrain the fact to be true first. If no
(more) solution(s) are found where this fact is true, only then will we try to constraint
the fact to be false instead.

7.6.5 Search
Propagation and distribution take place in a computation space [Sch02]. A computa-
tion space corresponds to a version of the constraint store and the propagators, after a
propagation phase has ended and before the distribution phase begins.

In the Mozart [Moz03] implementation of Oz [Smo95, VH04], computation spaces
are first class citizens of the programming language. Before every distribution step, a

7.7. Implementation 183

copy of the computation space is set aside. When the store fails in the current compu-
tation space, or no more solutions can be found with the chosen optional fact bound to
true, the computation will resume in the copy, but now with the optional fact bound to
false.

When a store is still stable when all optional facts have been assigned a truth value,
this combination of truth values is set aside in a special list that can be accessed by all
computation spaces.

Before a computation is resumed in the copy of a computation space, this list of
previously found solutions is consulted and an extra propagator is added that will con-
strain the set of optional facts are bound to true to be no subset of any of the solutions
already found.

This is a branch and bound strategy that guarantees that all our solutions are max-
imal and also improves the performance of the search by pruning the search space of
valid combinations of truth assignments of optional facts.

7.7 Implementation

7.7.1 Using Finite Domain Integers

The current implementation of SCOLLAR is based on finite domain integers con-
straints. Every permission, knowledge, and behavior fact is represented as a finite
domain integer variable with a domain ranging from 0 (false) to 1 (true). Logical con-
nectives can be implemented as a product constraint (logical and) or a sum constraint
(logical or).

For instance, the branch and bound propagator mentioned in section 7.6.5 is ex-
pressed as a constraint on the sum of the finite domain integer variables that were 0
(false) in a previously found solution. As the new set of variables bound to 1 cannot
be a subset of an earlier one, at least one variable that was bound to 0 in the previous
solution must now be bond to 1.

Figure 7.5 shows the Oz code for this propagator.

proc{MoreSolutions Old New}
% all further solutions must have at least one zero
% replaced by a one to avoid being a sub solution
% this goes even if the current solution is not alive.

(New.oldTraces) := {ZeroPredSpec Old}|@(Old.oldTraces}
{ForAll @(New.oldTraces)

proc{$ OldZeroPreds}
{FD.sum {Map OldZeroPreds fun{$ Pred} {GetPred Pred

New} end}
´>:´ 0}

end}
end

Figure 7.5: The Oz finite domain integer implementation of a constraint propagator
that guarantees that only maximal solutions are found

The procedure MoreSolutions installs the finite domain constraint propagator
FD.sum for every previous solution Old, to make sure that at least one variable in the

184 Chapter 7. Pattern Analysis with SCOLLAR

New solution that corresponds to a fact that was bound to 0 in the Old computation
space, will now be bound to 1.

The procedure MoreSolutions will be called whenever a solution is found, even
when this solution did not infer the liveness possibilities as required by the SCOLL
program. In that case, it would be futile to look for solutions with a smaller set of
optional facts bound to 1.

The idea for this approach was provided to us by Raphaël Collet.

7.7.2 Alternative Approach using Finite Sets
An alternative approach, based on finite set constraints, was proposed and worked out
by Yves Jaradin [SJV05], but was not yet integrated into SCOLLAR. Instead of indi-
vidual facts that describe a relation between n subjects, the finite set variables represent
n-tuples of subjects that satisfy a predicate.

A unique integer is assigned to each n-tuple of subjects to represent that tuple in the
set. Implications over predicates are translated into set inclusions over the correspond-
ing finite sets of integers. Disjunction is translated to union and conjunction becomes
intersection.

Because these operations are only valid when they are applied on compatible finite
set representations of predicates, some finite set representations of the predicates may
need to be adjusted. Consider the following behavior declaration:

FORWARDER {

=> may.receive();

did.receive(X) target(T) => may.sendTo(T,X);}

Remember: the predicates in subject rules have an implicit first argument. Their
actual arity is one more than the number of arguments shown in the subject rules.

A finite set variable may.receive will represent the set of subjects s1 such that the
fact may.receive(s1) is true. Two finite set variables will represent sets of pairs of
subjects: did.receive contains the pairs (s1, s2) such that did.receive(r1, r2) is true
and target contains the pairs (s1, s2) such that target(s1, s2) is true. Another finite
set variable may.sendTo will represent the set of triplets of subjects (s1, s2, s3) such
that the fact may.sendTo(s1, s2, s3) is true. Finally, the finite set subject contains
all subjects in the SCOLL pattern.

To find the triplets of subjects (s1, s2, s3) such that did.receive(s1, s2) is true and
target(s1, s3) is true, we cannot simply take the intersection of the did.receive and
target finite set variables. First we have to make cartesian products and permutations
in the following way:

The finite set {(s1, s2, s3)|did.receive(s1, s2)} = did.receive× subject

The finite set {(s1, s2, s3)|target(s1, s2)} = target× subject

The finite set {(s1, s2, s3)|target(s1, s3)} is the permutation
P2,3(target× subject)

The finite set {(s1, s2, s3)|did.receive(s1, s2) ∧ target(s1, s3)} =
(did.receive× subject) ∩ P2,3(target× subject))

7.7. Implementation 185

The cartesian product and the permutations of the finite sets are implemented by
recalculating the individual integers that represent the tuples of the result set.

To calculate a propagator for a rule that has less variables in its head than in its
body, one more kind of operation is needed: the element-wise projection onto sub-
tuples. This is also implemented by recalculating the integers that represent the tuples.

The second rule thus translates to the finite set constraint:

may.return ⊆ (did.receive× subject) ∩ P2,3(target× subject)).

All clauses can thus be translated to finite set propagators using the proper combi-
nation of cartesian product, permutation, projection, inclusion, union, and intersection.
Because the cartesian product is the most costly operation, we try to minimize its use
and the size of its argument sets.

Chapter 8

Patterns of Interaction and
Collaboration

This chapter presents a set of patterns of interacting entities, expressed in SCOLL
and analyzed in SCOLLAR. Its intention is to give the reader an idea of the practical
applicability of the approach presented in this thesis, not only to analyze patterns in
capability systems but also to express, investigate, and compare alternative approaches
for building secure software.

We could have provided many more useful and interesting patterns, but we opted
for an in depth approach, presenting a complete account of a limited set of patterns,
explaining their importance and applicability as well as their SCOLL representation,
and analyzing their solutions to the appropriate level of detail.

8.1 Deputies that cannot be Confused

8.1.1 Description of the problem
The problem of confused deputies is very well known by capability proponents. It
was first described by Norman Hardy [Har88] and is considered to give proof that per-
mission and designation have to be inextricably combined into unforgeable references:
capabilities. Several short explanations of the problem can be found on the Internet
[Stia, Mil, Spi, wik].

In this section we will explain the problem from the point of view of applying the
principle of least authority (POLA).

The necessary authority to serve a client

When POLA is applied, every entity has no more authority than is necessary to do its
job (as was explained in section 1.3.4). When an entity provides services to its clients,
the authority it needs will often depend on the client that requests its services. For
instance, for a compiler-entity to fulfill a client’s request: “compile-these-files-and-
write-the-output-herein”, it needs read authority to the source files and write authority
to the object files.

An upper bound for the service-entity’s necessary authority is the union of the
authority needed to serve all its possible clients. A practical lower bound for its neces-

187

188 Chapter 8. Patterns of Interaction and Collaboration

sary authority would be: the intersection of the authority needed to serve al its possible
clients. In the example of the compiler, this lower bound could be: read/write access to
a file that contains site-specific data and hints to optimize the compilation process and
output. The upper bound would add to this: read access to all source files and write
access to all object files.

To comply with POLA, what authority should we give to the service-entity then?
The lower bound is definitely not enough and the upper bound is usually way too much!

Delegation: Just-In-Time Least Authority

If the clients can delegate part of their authority to the service-entity, the problem of
least authority can be solved to a first approximation. A service-entity to whom the
clients must delegate part of their authority, is called a deputy.

We divide the authority necessary to perform the service into a part that is controlled
by the deputy and a part that is controlled by the client, so that neither of them has
excess authority. Authority is controlled by a subject, if it depends on the subject’s
behavior, in other words, if the subject would refuse to use it, it would not be available
to other subjects either. The client has to delegate authority to the deputy, in order to
enable the deputy to do his job. That means that the client controls part of the authority:
he could in principle refuse to delegate. The deputy also controls part of the authority:
he could in principle refuse to use his own authority or the delegated authority.

Table 8.1 shows an overview of the authority we consider here.

Table 8.1: Client-controlled versus deputy-controlled authority

authority controlled by client controlled by deputy
needed for the service (1) (3)

not needed for the service (2) (4)

We make sure that (3) contains exactly what the deputy needs for his own accounts,
when performing the service. That may even be a strict subset of the practical lower
bound we considered earlier. For instance: even when all the compiler’s clients would
have read authority to a common library of source files, that compiler’s least authority
(3) would not include read-authority to that library, but only its authority to read and
write its proper file with optimization hints.

If all goes well, the client delegates (1) to the deputy, who then uses both (1) and
(3) to perform the service. Delegation saved our day: it allows us to give the deputy
less than the least authority to do his job, (it can no longer do its job all by itself) and
we rely on the clients to provide what more is needed.

But did we not just open Pandora’s box, by introducing delegation? How are we
going to prevent that everybody starts delegating every authority to everybody else?
How will we ever be able to impose confinement of authority in such a chaos?

Although this is not an easy question, there is no reason to panic. In fact, section
8.1.5 will show with a real life example that, since delegation allows us to better comply
to POLA, this advantage overshadows the disadvantages. Here we will only discuss this
concrete context: the client controls (1) and (2) and can delegate them to the deputy.
The deputy controls (3) and (4) but does not want to delegate them. The deputy only
wants to make (3) available indirectly to its clients: to be used by the deputy for his
own sake, while serving its clients needs.

8.1. Deputies that cannot be Confused 189

Confusing the Deputy

The deputy should only use (3) on behalf of the client that delegated (1) to him, and
never use (4) on behalf of a client. A deputy is confused if he can be tricked by a client
to use his own authority (3) or (4) instead of (1). That can happen, for instance in the
compiler example, when the client, instead of designating a proper object file for the
output, designates the file that the compiler uses to manage its optimization tables for
that purpose. The compiler has indeed the right the write output to that file. The result
is a disaster: the compiler was “lured”1 into overwriting his own optimization file with
output of a compilation process. This example is close to the original confused deputy
problem that was reported by Norman Hardy [Har88].

The problem is not simple. It has to do with the intention of the deputy: what he
wants to use (3) and (4) for. How can we make sure that the deputy uses (3) and (4)
only for the right purpose?

8.1.2 Proposed Solutions
The approaches that have been proposed in the literature to solve this problem, can be
divided in two categories.

1. Identify the client or his permissions at runtime and make sure that he has per-
missions that provide him with the authority (1). If necessary, switch off the
deputy’s permissions that provide him with authority (3) and (4).

2. Make the client’s authority (1) portable, so that the deputy can use (1) in the
same way the client would, and make passing-portable-authority the only way
to delegate. The client then has to explicitly pass the portable authority (1), for
the deputy to use. The client will not be able do that unless he has (portable)
authority himself. Then rely upon the deputy not to use (3) or (4) instead of (1).

We will now have a brief look into the practical feasibility of both approaches.

Approach 1: Check Who’s Asking

If we can check and manipulate the permissions of all subjects at runtime, we can
safely proceed as follows: provide the necessary permissions for (1) and (3) to the
deputy, only if we can detect that he does not want to use (3) for its client’s purposes,
as a replacement for (1).

There are theoretical and practical problems with this approach. The most impor-
tant theoretical problems are:

• What do we mean ... “Who is asking?” ?
If I delegate a task to you and you delegate it further to the eventual deputy,
which one of us is the deputy working for then?

• We cannot infer the deputy’s intentions for using (3) from the fact that someone
invoked him with or without (1).

Instead of solving these problems exactly, the practical implementations of these
approaches settle for the following approximations:

1The Confused Deputy attack is sometimes referred to as the “luring attack”.

190 Chapter 8. Patterns of Interaction and Collaboration

• Assume that the deputy is working for a subset of all potential clients in the call
stack and demand that all of the subjects in that subset have permissions that
prove their authority (1). For instance, if I call you and you call the deputy, we
are both his clients.

• Approximately infer the deputy’s intentions for using (3) in some way from the
information that you do have. Such approximations are usually crude.

Most practical implementations struggle with either accuracy, safety, administrative
overhead, or with a combination of the three.

However, a remarkable approach was taken by Wallach in [WBDF97], in which he
proposes the practice of “stack walking”. The call stack of the programming language
runtime (in casu the Java VM), can be adorned by the caller to indicate if he wants
to delegate his own permissions to the called subjects down the call stack or not. The
delegation of permissions down the stack can be interrupted or otherwise influenced by
the other subjects down the stack, and so on.

The fact that the subjects themselves are given the choice to delegate is an important
step towards recognizing that the problem is one of intention and can only be solved
with the cooperation of the deputy himself, as only he can know his intentions.

But the approach is only applicable for stack-based implementations. It excludes
for instance inter-process and inter-thread calls in a parallel or distributed context. The
fact that subjects are allowed to influence information on the call stack opens another
can of worms, as the stack itself can now become an extra overt channel for data com-
munication, which conflicts with concerns for data confinement.

In section 8.5.4 we will model stack walking in SCOLL. That will allow us to
present the approach formally, and to better explain its advantages and disadvantages.

Approach 2: Capabilities

It is the deputy’s responsibility to make sure that its clients delegate their authority (1)
to it and to use all authorities (1),(3), and (4) for their proper purpose. All we have to do
is : make sure that the deputy has the necessary information to take that responsibility.

Capabilities (Chapter 4) combine designation with access-permission: you can
never have one without the other. Access permission to a subject is the permission
to use that subject. That means that, like designations, permissions have to be portable.
If Alice wants to communicate her reference-to-Carol (designation) to Bob, because
she wants Bob to be able to designate Carol, she inevitably delegates her permission-
to-use-Carol to Bob at the same time. But it also means that, like permissions, designa-
tions have become unforgeable: you can no longer designate any subject by guessing
its name (or location). Strings are guessable and will no longer be valid designations.

In capability systems all permissions are packed into capabilities. We no longer
need a central structure (e.g. the call stack) to provide the deputy with all the necessary
information to check if its clients have authority (1), because the deputy can rely on it
that it is impossible for a client to designate a subject without having access-permission
to that subject.

Checking a capability is almost as simple as using it, except that now the deputy
also has to protect the service it provides to its proper clients from being broken by
a rogue (or buggy) client who gives him the wrong kind of capabilities, e.g. carrying
authority from (2).

8.1. Deputies that cannot be Confused 191

(This is a concern about defensive consistency that we already encountered in DVH
capabilities (section 4.1.6) : to allow data abstractions and services to be used by
several clients, while ensuring that these clients remain protected from each other.)

In the compiler example: the compiler’s clients cannot designate the compiler’s
private optimization file if they don’t have permission to use it.

What happens in case the client has capabilities that provide authority (3) or (4), and
gives them to the deputy instead of the capabilities for (1). In that case, the deputy is not
confused: he uses the capabilities provided by that client just as if they were providing
authority (1). In the compiler example: the client that has access to the compiler’s
optimization file can tell the deputy to overwrite it with compiler output. The client
had the full right to use (and abuse) that file anyway, which he probably should not
have had. A confinement analysis should be done to find out how that particular client
can be prevented from having authority (3) in a portable form.

8.1.3 Capability Based Deputies in SCOLLAR
Let us now investigate what behavior restrictions the deputy should respect in practice,
in a capability based system, in order to avoid being “confused”. The requirement that
the client has to delegate his authority (1) to the deputy by sending a suitable capability
may be enough to make confusion avoidable, but that does not necessary mean that
avoiding confusion is trivial. SCOLLAR will help us look for the deputy’s necessary
behavior restrictions.

We will apply two different models for the capability rules: one with simple be-
havior may.return and one with refined may.returnFor behavior. The system
rules in both models have been explained earlier (Sections 5.5 and 6.5.3).

The initial access graph is shown in figure 8.1. The subject client has access to
a file cFile and to the subject deputy. The deputy has access to a file dFile.
Every entity is allowed to have access to itself. The relevant authority is here: what
entities in the pattern can the deputy be lured into using as if it was the client’s file.

client

cFile deputy

dFile

Figure 8.1: The initial access graph for the confused deputy analysis.

To specifically track this authority, we add a rule in the deputy’s behavior, DEPUTY,
that generates private knowledge. We call this knowledge predicate: useForClient.

The liveness property states that the deputy should use the client’s file for the
client’s purpose, (in casu, overwrite it with output data). The safety property states

192 Chapter 8. Patterns of Interaction and Collaboration

that the deputy should not use his own file for that purpose.
Table 8.2 shows the deputy pattern expressed in SCOLL using the simpler vari-

ant of the capability interaction model. Some alternatives we will also investigate are
indicated between comment brackets (alternatives A and B).

A refined set of predicates and and extended set of system rules for this pattern
will investigated also, and is referred to alternative 1 (Table 8.3). In this refined pattern
there is no need to add a rule for may.returnFor and may.returnFor0 in the
UNKNOWN behavior, because the behavior refinement rule takes care of this. There will
be no need to add or modify the deputy’s behavior either, because the knowledge
refinement rules make sure that refined knowledge implies the unrefined knowledge
the deputy uses to define its behavior.

We first assign UNKNOWN behavior to the deputy’s dFile. That makes the pattern
suitable in situations where the deputy did not create that file himself and therefore
may not rely on the typically restricted (passive) behavior of that file.

As indicated in the subject section, we will also analyze the alternatives for the
behavior of dFile:

A) MINIMUM behavior: the deputy’s file is relied upon to be completely unsuitable for
propagating subjects (only data).

B) MINIMUM behavior prefixed by the search indicator: ?
In that variant, SCOLLAR will look for minimal sets of restrictions for the be-
havior of both the deputy and his “file” subject.

8.1.4 Analysis of the SCOLLAR results
This section represents and discusses the results of the SCOLLAR analysis of the pat-
terns described in section 8.1.3. We used SCOLLAR in its second operation mode
(See “Solution Mode” in section 7.2.2). In short, we made SCOLLAR search for all
maximal sets of behavior predicates (for the deputy, and in alternative B also for its
file) to discover what restrictions are necessary and sufficient in the deputy subject’s
behavior to guarantee that it will not use its own file in the wrong way (as if it was a
client-provided file), while not preventing him from using the client-provided file for
that purpose.

We will learn two things from the analysis results. First of all, we will learn what
behavior we should avoid when implementing or designing a deputy entity that cannot
be confused. But there is another important lesson to be learned here: from looking
at the deputy’s internal knowledge (his intentions), we will find a very important clue
about how well we expressed the problem itself in SCOLLAR.

Behavior restrictions from the original set-up

The pattern in table 8.2 returned the access graph in figure 8.2 and a single solution for
the deputy’s behavior, listed in table 8.5.

From the access graph we can immediately see that nobody got direct access to
the dFile, even though we did not specify that as a safety property. The other three
subjects can all safely be introduced to each other.

The list of behavior restrictions for deputy is shown in table 8.4
When we click on the button for the only solution, the behavior and knowledge

facts of all the subjects in the pattern are shown in their own table. From that page,
table 8.5 shows the extract that contains the deputy’s knowledge facts (top part) and

8.1. Deputies that cannot be Confused 193

Table 8.2: Deputy Pattern in Scoll

declare
permission: access/2
behavior: may.sendTo/3 may.getFrom/2 may.return/2

may.receive/1
knowledge: did.sendTo/3 did.getFrom/3 did.return/2

did.receive/2
system

B:may.receive() A:may.sendTo(B,X) access(A,B)
access(A,X) => A:did.sendTo(B X);
A:did.sendTo(B X) => B:did.getFrom(X);
B:did.getFrom(X) => access(B,X);
A:may.getFrom(B) B:may.return(X) access(A,B)
access(B,X) => A:did.getFrom(B,X);
A:did.getFrom(B,X) => access(A,X);
A:did.getFrom(B,X) => B:did.return(X);

behavior
UNKNOWN {
=> may.receive() may.getFrom(A);
=> may.return(X) may.sendTo(A,X);}
DEPUTY {did.receive(F) => useForClient(F);}
MINIMAL {}

subject
client: UNKNOWN
cFile: UNKNOWN
? deputy: DEPUTY
dFile: UNKNOWN

/* alternative A : dfile: MINIMAL
alternative B : ?dfile: MINIMAL */

config
access(client,client) access(cFile,cFile)
access(deputy,deputy) access(dFile,dFile)
access(client,cFile) access(client,deputy)
access(deputy,dFile)

goal
useForClient(deputy,cFile)
!useForClient(deputy,dFile)

194 Chapter 8. Patterns of Interaction and Collaboration

Table 8.3: Deputy Pattern Alternative Parts

declare
permission: access/2
behavior: may.sendTo/3 may.getFrom/2 may.return/2

may.receive/1
may.returnFor0/2 may.returnFor/3

knowledge: did.sendTo/3 did.getFrom/3 did.return/2
did.receive/2
did.returnFor0/3 did.returnFor0/2
did.getFromFor0/3 did.getFromFor/4

system
B:may.receive() A:may.sendTo(B,X) access(A,B)
access(A,X) => A:did.sendTo(B X);
A:did.sendTo(B X) => B:did.getFrom(X);
B:did.getFrom(X) => access(B,X);
A:may.getFrom(B) B:may.return(X) access(A,B)
access(B,X) => A:did.getFrom(B,X);
A:did.getFrom(B,X) => access(A,X);
A:did.getFrom(B,X) => B:did.return(X);
/* ADDITIONAL RULES */
B:may.returnFor(X,Y) A:may.sendTo(B,X) B:may.receive()
access(B,Y) access(A,X) access(A,B)
=> A:did.getFromFor(B,X,Y);
A:did.getFromFor(B,X,Y) => B:did.returnFor(X,Y);
A:did.getFromFor(B,X,Y) => access(A,Y);
B:did.returnFor(X,Y) => access(B,X);
A:may.getFrom(B) B:may.returnFor0(Y) access(A,B)
access(B,Y)
=> B:did.returnFor0(Y) A:did.getFromFor0(B,Y);
B:may.return(Y) =>
=> B:may.returnFor(X,Y) B:may.returnFor0(Y);
A:did.getFromFor0(B,Y) => A:did.getFrom(B,Y);
B:did.returnFor0(Y) => B:did.return(Y);

behavior
. . .

subject
. . .

config
. . .

goal
. . .

8.1. Deputies that cannot be Confused 195

client

cFile

deputy

dFile

Figure 8.2: The resulting access graph

Table 8.4: The deputy’s behavior restrictions.

Solutions
deputy:may.sendTo(cFile,dFile) 0
deputy:may.sendTo(client,dFile) 0
deputy:may.sendTo(dFile,cFile) 0
deputy:may.sendTo(dFile,client) 0
deputy:may.sendTo(dFile,deputy) 0
deputy:may.sendTo(deputy,dFile) 0
deputy:may.return(dFile) 0

196 Chapter 8. Patterns of Interaction and Collaboration

behavior facts (bottom part) in matrix form. The columns in that matrix indicate the
subject in the last argument of the fact.

Table 8.5: The deputy’s knowledge and behavior (1)

deputy
client cFile deputy dFile

access(deputy,) 1 1 1 1
deputy:did.receive() 1 1 1
deputy:did.return()
deputy:did.getFrom(client,) 1 1
deputy:did.getFrom(cFile,) 1 1
deputy:did.getFrom(deputy,) 1 1
deputy:did.getFrom(dFile,)
deputy:did.sendTo(client,) 0
deputy:did.sendTo(cFile,) 1 1 0
deputy:did.sendTo(deputy,) 1 1 1 0
deputy:did.sendTo(dFile,) 0 0 0
deputy:useForClient() 1 1 1 0
deputy:may.receive() 1
deputy:may.getFrom() 1 1 1 1
deputy:may.return() 1 1 1 0
deputy:may.sendTo(client,) 0
deputy:may.sendTo(cFile,) 1 1 0
deputy:may.sendTo(deputy,) 1 1 1 0
deputy:may.sendTo(dFile,) 0 0 0

The goal properties (safety and liveness) are part of the deputy’s knowledge (upper
part of the table). The safety property is indicated with 0 , the liveness property with
1 . They indicate that the solution is indeed safe and alive.

The behavior predicates marked with 0 indicate what the deputy should not do. Let
us consider them one by one:

deputy:may.return(dFile) The deputy should not return his own file to his
clients as part of his service. A restriction that can indeed be expected.

deputy:may.sendTo(client,dFile) Of course, the deputy should not sim-
ply send his own file to the client. Otherwise the client could afterwards desig-
nate that file for the deputy to overwrite. The reader is correct to ask himself :
“How did the deputy got access to the client anyway?”

The client has access to himself, and could have provided himself to the deputy
instead of his file. That is completely legal and realistic, as the client may imple-
ment a file interface himself and cope with the overwrite intentions of the deputy
himself.

This suggest a nice way for a client to test what a deputy would do to his real
file: provide himself (or one of his allies) to the service and see what happens. Of
course such a test would not be fail safe: the deputy may not be that predictable.

8.1. Deputies that cannot be Confused 197

deputy:may.sendTo(cFile,dFile) The deputy should not send his own file
to the client’s file subject. This restriction holds a useful warning about the
client’s file: since we don’t wanted to rely on its behavior, SCOLLAR assumed
(as we should too) that it can as well be an adversary, cleverly disguised as (with
the interface of) a file.

deputy:may.sendTo(deputy,dFile) This restriction needs some explana-
tion. At first sight it may seem to make no sense: why should the deputy not
be allowed to send his own file to himself? Because then he may confuse him-
self: as a responder he may assume that a client did send that file to him in which
case he will overwrite that file.

If our deputy really needs to send that file to himself, then he should be able to
make the difference. His behavior in our pattern must be adapted to reflect how
he makes that difference. At the current level of detail, SCOLLAR warns for the
imminent danger of the deputy confusing himself!

deputy:may.sendTo(dFile,client) This says: the deputy should not send
the client to dFile. This makes sense if dFile is not a simple file, which is
a realistic assumption. Instead of a simple file, many deputies want to use a
deputy themselves. The restriction points out the danger that this second-level
deputy (dFile) may not be restricted enough. For instance, if such a dFile
gets access to client, dFile may become known to client who can then
“confuse” the deputy.

deputy:may.sendTo(dFile,cFile) The deputy should not send the client’s
file to dFile. The reason is the same as in the previous restriction: dFile may
become known to client.

deputy:may.sendTo(dFile,deputy) The deputy should not send himself to
dFile, because dFile itself could then play client, and make the deputy over-
write himself. If this would be an intended attack by dFile, the deputy’s beha-
vior restriction would be futile, because dFile could as well overwrite himself.
But in case “unknown behavior” really means what it says (and not necessary
“hostile behavior”), the restriction certainly makes sense.

Other things we can learn from the analysis

It is often useful to look at the resulting tables, both at the knowledge part and at the
behavior part, to learn interesting things about the pattern itself as well as about how
the pattern was expressed in SCOLLAR.

An obviously useful view is presented by the graph of access relations between the
subjects in the pattern. This can be generated in SCOLLAR via its interface to the
graph visualization tool GraphViz [KN93, GN00, GV05]. For the current example,
figure 8.2 showed the resulting graph.

But to understand a pattern and the role an entity plays in it, it can be useful to look
a the individual fields in that subject’s fact table. Even in this seemingly simple pattern,
there are things to discover.

Look for instance at the deputy’s internal knowledge facts useForClient. We
already discussed two of them in detail: deputy:useForClient(cFile) is what
we wanted to be possible (liveness) and deputy:useForClient(dFile) is what
we regarded as confusion and wanted to be impossible.

198 Chapter 8. Patterns of Interaction and Collaboration

A third one, deputy:useForClient(client) turns our attention again to
the possibility that the client presents itself as his own file. We saw that there was noth-
ing wrong with that. The interested reader is invited to try if that could be prevented,
by adding this predicate as a safety property to the goal part of the pattern.

We want to draw the attention of the reader to the remaining fact of this predicate:
deputy:useForClient(deputy). It literally says there: the deputy will treat
itself as if it was a file to be used on the clients behalf. That was not our intention, or
was it? Of course, the client can indeed provide the deputy to the deputy, because he
has access to the deputy. That means that the deputy can always be “lured” into treating
himself as a file delegated by its client!

The deputy will have to counter his own intentions to use itself as a client’s file.
The easiest way to do that is to make sure that trying to write to it has no effect.
After all, we are working in a collaborative model and the deputy as an invoker of
his own “write output” routine has no authority to actually write anything, unless the
deputy as a responder (implementor of that routine) wants to collaborate. The simplest
thing is to make sure that the deputy does not implement such a routine or method,
by encapsulating the deputy’s “write output” call in an error handling routine and by
catching the error that will be thrown.

The interested reader is encouraged to model this refined behavior in Scoll, using
for instance the extension for data propagation discussed in section 5.6.3.

Alternative 1: using refined behavior

The extended pattern using the rules of table 8.3 also returned a single solution for the
deputy’s behavior. The access graph is the same as before (figure 8.2).

The list of restrictions to be imposed on the deputy’s behavior is presented in ta-
ble 8.6. It contains the same restrictions as before, plus restrictions for the refined
predicates of may.return.

Table 8.6: The deputy’s behavior restrictions when using refined behavior. (Alt. 1)

Solutions
deputy:may.sendTo(cFile,dFile) 0
deputy:may.sendTo(client,dFile) 0
deputy:may.sendTo(dFile,cFile) 0
deputy:may.sendTo(dFile,client) 0
deputy:may.sendTo(dFile,deputy) 0
deputy:may.sendTo(deputy,dFile) 0
deputy:may.return(dFile) 0
deputy:may.returnFor0(dFile) 0
deputy:may.returnFor(cFile,dFile) 0
deputy:may.returnFor(client,dFile) 0
deputy:may.returnFor(deputy,dFile) 0

Table 8.6 shows that of the five refinements of deputy:may.return(dFile)
only four are restricted: deputy:may.returnFor(dFile,dFile) is not in the
list. This means that it is OK for the deputy to return dFile in exchange for dFile
in the same invocation. However, because deputy is the only one who has access

8.1. Deputies that cannot be Confused 199

to dFile, and deputy:may.sendTo(deputy,dFile) is forbidden, such an
exchange will never take place. The behavior is irrelevant in this pattern.

The zero’s in the lower three rows of table 8.6 simply enforce the earlier restriction
in deputy:may.return(dFile) that the deputy should never return his own file,
not even in exchange for anything else.

Alternative A: relying on the deputy’s file

We now take the original pattern in table 8.2 and set dFile’s behavior to MINIMUM
to express that we can rely on the fact that dfile is a simple file. Now SCOLLAR
also finds a single solution for the deputy’s behavior, its access graph being the same
as before (figure 8.2).

The restrictions to be imposed on the deputy’s behavior are listed in table 8.7.

Table 8.7: The deputy’s behavior restrictions when relying upon dFile. (Alt. A)

Solutions
deputy:may.sendTo(cFile,dFile) 0
deputy:may.sendTo(client,dFile) 0
deputy:may.sendTo(deputy,dFile) 0
deputy:may.return(dFile) 0

Compared to the results in table 8.4, where dFile had UNKNOWN behavior, no
restrictions were added (as could be expected), and out of the seven restrictions listed
there, the following four were kept (for the reader’s convenience, the comments are
repeated here):

deputy:may.return(dFile) A restriction that can indeed be expected: the
deputy should not return his own file to his clients as part of his service.

deputy:may.sendTo(cFile,dFile) The deputy should not send his own file
to the client’s file. This restriction holds a useful warning about the client’s file:
we don’t know anything about it’s behavior. It could be a simple file, but it could
also be an adversary, cleverly disguised as a file.

deputy:may.sendTo(client,dFile) Of course, the deputy should not sim-
ply send his own file to the client. Otherwise the client could afterwards desig-
nate that file for the deputy to overwrite. The reader is correct to ask himself :
“How did the deputy got access to the client anyway?”

The client has access to himself (by reflexive access rule), and could have pro-
vided himself to the deputy instead of his file. That is completely legal and
realistic, as the client may implement a file interface himself and cope with the
overwrite intentions of the deputy himself. It suggest a nice way for a client to
test what a deputy would do to his real file: provide himself self (or one of his
allies) to the service and see what happens. Of course such a test would not be
fail safe: the deputy may not be that predictable.

deputy:may.sendTo(deputy,dFile) This restriction needs some explana-
tion. At first sight it may seem to make no sense: why should the deputy not

200 Chapter 8. Patterns of Interaction and Collaboration

be allowed to send his own file to himself? Because then he may confuse him-
self: as a responder, he may assume that a client did send that file to him and
overwrite it.

If our deputy really needs to send that file to himself, then he should be able
to make the difference, and then his behavior in our pattern must be adapted to
reflect how he makes that difference. At the current level of detail, SCOLLAR
warns for the imminent danger of the deputy confusing himself!

Compared to the results in table 8.5, where dFile had UNKNOWN behavior, the
following restrictions are no longer relevant:

deputy:may.sendTo(dFile,cFile)

deputy:may.sendTo(dFile,client)

deputy:may.sendTo(dFile,deputy)

Since dFile no longer cooperates in any way, it is no longer relevant what the deputy’s
behavior wants to send to it.

Alternative 1A: relying on the deputy’s file and using exchange rules

For completeness, we briefly mention the results of combining alternative 1 with alter-
native A). Table 8.8 shows the results. Again, a single solution was found by SCOL-
LAR and the access graph does not differ from the previous ones.

Table 8.8: The deputy’s behavior restrictions with refined behavior and restricted
dFile (Alt. 1A)

Solutions
deputy:may.sendTo(cFile,dFile) 0
deputy:may.sendTo(client,dFile) 0
deputy:may.sendTo(deputy,dFile) 0
deputy:may.return(dFile) 0
deputy:may.returnFor0(dFile) 0
deputy:may.returnFor(cFile,dFile) 0
deputy:may.returnFor(client,dFile) 0
deputy:may.returnFor(deputy,dFile) 0

The reader is invited to check that this list adds the restrictions to alternative A that
were also added to the original set up by alternative 1.

Alternative B : maximizing dFile’s behavior too.

We now instruct SCOLLAR to search for minimal combinations of restrictions in the
behavior of both the deputy and his file. Figure 8.3 shows the combined access graph
for all the solutions.

In the graph we see three extra access arcs (the dotted ones) that were not possible
before, when dfile was either completely unknown or a simple file. This shows the
importance of well balanced behavior restrictions: relying upon a collaborator’s well

8.1. Deputies that cannot be Confused 201

client

cFile

deputy

dFile

Figure 8.3: The combined access graph of all the solutions.

balanced behavior opens up possibilities for safe collaboration that would be impossi-
ble using a completely restricted or completely unrestricted collaborator.

It also shows the importance of modeling behavior approximations precisely. Coarse
approximations, like “all or nothing”, lead to less solutions.

SCOLLAR finds 12 solutions, imposing restrictions on 15 behavior facts, as is
presented in table 8.9. The table is split up in restrictions for dFile (top part) and
restrictions for deputy (bottom part).

The deputy’s restrictions in solutions 1 and 12 correspond to table 8.7, where
dFile’s behavior was MINIMAL. This means that we can relax the strict passiveness
of dFile, either as is proposed by solutions 1 or by solution 12, without necessarily
having to restrict the deputy’s behavior any further. For that it suffices that the dFile
either does not send himself (solution 1), or does not receive anything as a responder
(solution 12).

Solution 2 represent the situation in which dFile’s behavior is unrestricted. The
reader can verify that solution 2 corresponds to the unique solution in table 8.4, where
dFile’s behavior was UNKNOWN.

Notice that 11 out of the 12 solutions restrict deputy in a different way. This
means that relying on dFile gives us 11 times as many possibilities for the deputy’s
maximal behavior than we had if we did not rely on dFile.

Note also that the deputy’s behavior restrictions found in table 8.7, where dFile’s
behavior was MINIMAL, are consistently required in all solutions. This can be easily
checked by looking at the four rows in table 8.9 that contain all zero’s.

There is exactly one solution in which the access graph actually includes all dotted
arcs in figure 8.3. The reader is encouraged to try this example in SCOLLAR’s online
version and find the unique solution that puts dFile in the unique position of having
access to all entities in the pattern.

202 Chapter 8. Patterns of Interaction and Collaboration

Table 8.9: The 12 solutions restricting the behavior of deputy and dFile. (Alt. B)

Solutions 1 2 3 4 5 6 7 8 9 10 11 12

dFile:may.getFrom(cFile) 1 1 1 1 0 0 0 1 1 1 0 1
dFile:may.getFrom(client) 1 1 1 1 1 1 1 0 0 0 0 1
dFile:may.getFrom(deputy) 1 1 1 0 1 1 0 1 1 0 1 1
dFile:may.sendTo(cFile,dFile) 0 1 1 1 0 0 0 1 1 1 0 1
dFile:may.sendTo(client,dFile) 0 1 1 1 1 1 1 0 0 0 0 1
dFile:may.sendTo(deputy,dFile) 0 1 0 0 1 0 0 0 1 0 1 1
dFile:may.receive() 1 1 1 1 1 1 1 1 1 1 1 0
deputy:may.sendTo(cFile,dFile) 0 0 0 0 0 0 0 0 0 0 0 0
deputy:may.sendTo(client,dFile) 0 0 0 0 0 0 0 0 0 0 0 0
deputy:may.sendTo(dFile,cFile) 1 0 0 0 1 1 1 0 0 0 1 1
deputy:may.sendTo(dFile,client) 1 0 0 0 0 0 0 1 1 1 1 1
deputy:may.sendTo(dFile,deputy) 1 0 1 1 0 1 1 1 0 1 0 1
deputy:may.sendTo(deputy,dFile) 0 0 0 0 0 0 0 0 0 0 0 0
deputy:may.return(cFile) 1 1 0 1 1 1 1 0 1 1 1 1
deputy:may.return(client) 1 1 0 1 1 0 1 1 1 1 1 1
deputy:may.return(dFile) 0 0 0 0 0 0 0 0 0 0 0 0

Alternative 1B : optimizing dFile’s behavior with exchange.

We now consider the refined predicates and rules and let SCOLLAR search for minimal
combinations of restrictions in the behavior of both the deputy and his file.

The combined access graph for all solutions is depicted in figure 8.4 and is not
different from the one in figure 8.3. The behavior refinement did not influence the
maximal propagation of access permissions.

SCOLLAR finds 25 solutions before timing out after 30 seconds, imposing restric-
tions on 34 behavior facts, that are presented in tables 8.10 and 8.11. The tables are
split up in restrictions for dFile (top part) and restrictions for deputy (bottom part).

There is again exactly one solution in which the access graph actually includes all
dotted arcs in figure 8.4. The reader is encouraged to try this example in SCOLLAR’s
online version and find the unique solution that gives dFile access to all entities in
the pattern.

Again we can make the comparison with the situation in alternative 1A (table 8.8),
where refined behavior predicates and rules were used and where dFile’s behavior
was MINIMUM. All seven restrictions in the deputy’s behavior can be consistently
found in all solutions of tables 8.10 and 8.11.

8.1.5 “Little Snitch” : A User Experience with Reference Monitors

The Mac OS X program Little Snitch R©[lit] provides a pedagogical example that al-
lows you to watch reference monitoring at work, and to detect the need for unconfus-
able deputies. It allows the user to grant (and revoke) a program this-time, this-session,
or permanent access to the Internet. The snitch is configured by default to ask the user
if he wants to give a program access to the Internet, the first time the that program tries
to connect to the Internet. Programs the user denies access to the Internet to are made

8.1. Deputies that cannot be Confused 203

Table 8.10: Solutions 1 to 13. (Alt. 1B)

Solutions 1 2 3 4 5 6 7 8 9 10 11 12 13
dFile:may.getFrom(cFile) 1 1 1 0 0 1 1 1 1 1 1 1 1
dFile:may.getFrom(client) 1 1 1 1 1 0 0 0 0 0 0 0 0
dFile:may.getFrom(deputy) 1 1 0 1 0 1 1 1 1 1 0 0 0
dFile:may.sendTo(cFile,cFile) 1 0 0 1 1 1 1 1 1 1 1
dFile:may.sendTo(cFile,client) 1
dFile:may.sendTo(cFile,dFile) 0 1 1 0 0 1 1 1 1 1 1 1 1
dFile:may.sendTo(cFile,deputy) 1 0 1 1 1 1 1 1 1 1
dFile:may.sendTo(client,cFile) 1
dFile:may.sendTo(client,client) 1 0 0 0 0 0 0 0 0
dFile:may.sendTo(client,dFile) 0 1 1 1 1 0 0 0 0 0 0 0 0
dFile:may.sendTo(client,deputy) 1 0 0 0 0 1 0 0 0
dFile:may.sendTo(deputy,cFile) 1 0 1 1 1 1 1 1 1 1
dFile:may.sendTo(deputy,client) 1 0 1 0 1 1 0 0 1
dFile:may.sendTo(deputy,dFile) 0 1 0 1 0 0 0 0 0 1 0 0 0
dFile:may.sendTo(deputy,deputy) 1 0 1 0 1 1 0 0 1 0 1 1
deputy:may.sendTo(cFile,dFile) 0 0 0 0 0 0 0 0 0 0 0 0 0
deputy:may.sendTo(client,dFile) 0 0 0 0 0 0 0 0 0 0 0 0 0
deputy:may.sendTo(dFile,cFile) 1 0 0 1 1 0 0 0 0 0 0 0 0
deputy:may.sendTo(dFile,client) 1 0 0 0 0 1 1 1 1 1 1 1 1
deputy:may.sendTo(dFile,deputy) 1 0 1 0 1 1 1 1 1 0 1 1 1
deputy:may.sendTo(deputy,dFile) 0 0 0 0 0 0 0 0 0 0 0 0 0
deputy:may.return(cFile) 1 1 1 1 1 0 0 0 0 1 1 0 0
deputy:may.return(client) 1 1 1 1 1 1 1 1 1 1 1 1 1
deputy:may.return(dFile) 0 0 0 0 0 0 0 0 0 0 0 0 0
deputy:may.returnFor0(cFile) 1 1 1 1 1 0 0 0 0 1 1 1 1
deputy:may.returnFor0(client) 1 1 1 1 1 1 1 1 1 1 1 1 1
deputy:may.returnFor0(dFile) 0 0 0 0 0 0 0 0 0 0 0 0 0
deputy:may.returnFor(cFile,client) 1 1 1 1 1 1 1 1 1 1 1 1 1
deputy:may.returnFor(cFile,dFile) 0 0 0 0 0 0 0 0 0 0 0 0 0
deputy:may.returnFor(client,cFile) 1 1 1 1 1 1 0 1 0 1 1 1 0
deputy:may.returnFor(client,dFile) 0 0 0 0 0 0 0 0 0 0 0 0 0
deputy:may.returnFor(deputy,cFile) 1 1 1 1 1 0 0 1 1 1 1 0 0
deputy:may.returnFor(deputy,client) 1 1 1 1 1 1 1 1 1 1 1 1 1
deputy:may.returnFor(deputy,dFile) 0 0 0 0 0 0 0 0 0 0 0 0 0

204 Chapter 8. Patterns of Interaction and Collaboration

Table 8.11: Solutions 14 to 25. (Alt. 1B)

Solutions 14 15 16 17 18 19 20 21 22 23 24 25
dFile:may.getFrom(cFile) 1 0 1 1 1 0 0 0 0 0 0 0
dFile:may.getFrom(client) 0 0 1 1 1 1 1 1 1 1 1 1
dFile:may.getFrom(deputy) 0 1 1 1 0 1 1 1 1 0 0 0
dFile:may.sendTo(cFile,cFile) 1 0 1 1 1 0 0 0 0 0 0 0
dFile:may.sendTo(cFile,client) 0 1 1 1 1 1 1 1 1 1 1
dFile:may.sendTo(cFile,dFile) 1 0 1 1 1 0 0 0 0 0 0 0
dFile:may.sendTo(cFile,deputy) 1 1 1 1 1 0 0 0 0 0 0 0
dFile:may.sendTo(client,cFile) 0 1 1 1 1 1 1 1 1 1 1
dFile:may.sendTo(client,client) 0 0 1 1 1 1 1 1 1 1 1 1
dFile:may.sendTo(client,dFile) 0 0 1 1 1 1 1 1 1 1 1 1
dFile:may.sendTo(client,deputy) 0 1 1 1 1 1 1 1 1 1 1 1
dFile:may.sendTo(deputy,cFile) 1 1 1 1 1 1 0 0 1 0 1 1
dFile:may.sendTo(deputy,client) 1 1 1 1 1 1 1 1 1 1 1 1
dFile:may.sendTo(deputy,dFile) 0 1 0 0 0 0 0 0 0 0 0 0
dFile:may.sendTo(deputy,deputy) 0 1 0 1 1 0 0 1 1 1 0 1
deputy:may.sendTo(cFile,dFile) 0 0 0 0 0 0 0 0 0 0 0 0
deputy:may.sendTo(client,dFile) 0 0 0 0 0 0 0 0 0 0 0 0
deputy:may.sendTo(dFile,cFile) 0 1 0 0 0 1 1 1 1 1 1 1
deputy:may.sendTo(dFile,client) 1 1 0 0 0 0 0 0 0 0 0 0
deputy:may.sendTo(dFile,deputy) 1 0 1 1 1 1 1 1 1 1 1 1
deputy:may.sendTo(deputy,dFile) 0 0 0 0 0 0 0 0 0 0 0 0
deputy:may.return(cFile) 0 1 0 0 0 1 1 1 1 1 1 1
deputy:may.return(client) 1 1 0 0 0 0 0 0 0 0 0 0
deputy:may.return(dFile) 0 0 0 0 0 0 0 0 0 0 0 0
deputy:may.returnFor0(cFile) 1 1 0 0 1 1 1 1 1 1 1 1
deputy:may.returnFor0(client) 1 1 0 0 1 0 0 0 0 1 1 1
deputy:may.returnFor0(dFile) 0 0 0 0 0 0 0 0 0 0 0 0
deputy:may.returnFor(cFile,client) 1 1 1 1 1 0 1 1 0 1 0 0
deputy:may.returnFor(cFile,dFile) 0 0 0 0 0 0 0 0 0 0 0 0
deputy:may.returnFor(client,cFile) 0 1 1 1 1 1 1 1 1 1 1 1
deputy:may.returnFor(client,dFile) 0 0 0 0 0 0 0 0 0 0 0 0
deputy:may.returnFor(deputy,cFile) 1 1 1 0 0 1 1 1 1 1 1 1
deputy:may.returnFor(deputy,client) 1 1 1 0 0 1 1 0 0 0 1 0
deputy:may.returnFor(deputy,dFile) 0 0 0 0 0 0 0 0 0 0 0 0

8.1. Deputies that cannot be Confused 205

client

cFile

deputy

dFile

Figure 8.4: The combined access graph of all the solutions.

believe that the computer is not connected to the Internet for the moment.
It is a useful little tool that shows what programs actually make use of the Internet.

You would be surprised to see how many programs actually do that, for a reason you as
a user can only guess. Is the program calling home to check if your license was expired
or pirated? Is the program (infected by) spyware?

It dawned to me that this was an example of how futile reference monitoring can
be, when Little Snitch asked me whether I wanted to give my ssh tool access to the
Internet. What should I do? If I only gave it this-session allowance, I would have to
repeat that every time. But if I didn’t, other programs I did not want to have access
could simply call upon ssh to make their home-calls!

At first sight, it may seem that this is just another instance of the usability–security
trade-off, most users get accustomed to very quickly when being confronted with se-
curity. The security part usually gets the worst deal in this situation. Indeed, eventually
I gave ssh permanent access to the Internet. I am now vulnerable to all spyware that is
smart enough to use ssh for their Internet access.

Suppose I was more of a paranoiac nature, as a good security researcher should
probably be, and I decided to give ssh only this-time or this-session access to the In-
ternet. How will I decide when to give it access and when not to? Little Snitch could
possibly be extended to try to find out who called ssh and provide me with a complete
call stack to help me decide, following the “check who’s asking”-strategy explained in
section 8.1.2. The question then still remains: which one of the programs in the call
stack actually wants to use the Internet and for what purpose? Even if I would have
the patience I would often not be able to make a well founded decision and I would
eventually have to guess.

But suppose now that access-to-the-Internet was a capability and ssh was written
as a non-confusable deputy that expected its clients (e.g. the user shell) to pass it the
capability-to-access-the-Internet as an argument. I could then simply instruct my shell
program to pass that capability to the programs I trust, who could use it directly to

206 Chapter 8. Patterns of Interaction and Collaboration

connect to the Internet, or pass it on to ssh if they wanted to.
I would no longer have to make the choice: give ssh access to the Internet or not: it

would be able to access the Internet exactly when my trusted programs would want it
to be.

8.2 Revokable authority

We have seen in Chapter 4 that, in capability based systems, access is an irrevocable
permission that comes with every capability. The access permission allows the owner to
use the entity designated by the capability. Only the authority that is always guaranteed
by the designated entity, is irrevocable authority. For instance, a file-capability will
guarantee you the authority to read and write from that file and a read-stream capability
will guarantee you the authority to read a certain file.

A read-stream capability can be implemented as an intermediate entity that has
access to a file and is programmed to never write to the file or pass on its file capability
to other entities but only to use its file capability for reading. Because of its restricted
behavior, it reduces the authority it provides to its clients to read-only authority on the
file.

In the same way, we can make a revocation assistant that acts as a proxy to a certain
capability and stops collaborating when we tell it to. An irrevocable permission to use
this assistant provides revocable authority to the actual capability. In this section we
will show some SCOLL patterns in which the collaborative behavior of a relied-upon
entity is diminished at runtime to revoke authority.

SCOLL does not provide a direct way to express diminished behavior, because all
behavior rules as well as all system rules are monotonic. The more knowledge, the
more behavior is generated. The behavior of a revocation assistant is non-monotonic:
when receiving certain knowledge (revocation is requested) it becomes less coopera-
tive.

To circumvent this problem, we examine the maximally reachable propagation of
authority before the revocation request to check if revocation is still effective. Revoca-
tion is only effective as long as the revocation assistant remains the only entity that can
provide authority to use the protected capability.

8.2.1 The Caretaker Pattern

The pattern we investigate here is an adaptation of the one proposed by Redell [Red74],
called “the caretaker”. Miller [Mil06b] uses a slightly simplified version of that pattern
to explain how capability systems can provide revocable authority by making use of
access abstractions, similar to the read-stream entity and the revocation assistant men-
tioned above. He also shows that analysis based on permissions alone, is too crude to
detect the revocability in such patterns, because the crucial influence of behavior is not
taken into account.

Here, we investigate a practical aspect of the applicability of the caretaker pattern:
what are the conditions we have to rely on to make the revocation in the pattern effec-
tive?

Figure 8.5 shows the initial access graph of a caretaker pattern. Subject alice
wants to give bob revokable access to carol and has created the caretaker for
that purpose. The caretaker’s behavior is that of a simple proxy to carol: passing

8.2. Revokable authority 207

alice

caretaker

carol

bob

danny

Figure 8.5: The Caretaker Pattern - Initial Configuration

on to carol every method and argument and returning to its invoker everything that
carol returned from the invocation.

An actual implementation of this proxying behavior for the caretaker is given in
E-language code [MSC+01] in Miller’s [Mil06b]. However, only the code for the
caretaker itself is presented there, to show that revocation can work. Programming
languages, even capability secure ones like E, are not the most suitable instruments
to investigate what behavior restrictions are necessary in a pattern of collaborating
entities. To that purpose we will express the pattern in SCOLL and use SCOLLAR to
analyze it.

The caretakermay always be able to stop collaborating, but that does not neces-
sary revoke bob’s authority to use carol (remember that authority can flow via many
ways). if alice and carol cannot be relied upon, switching off the caretaker’s
behavior can be futile. For instance, an unrestricted alice may (inadvertently) send
or return carol to bob and thereby give bob irrevocable authority to use carol.
Or carol, when programmed wrongly, may return herself and then the caretaker
will return carol to his invoker, again giving bob the irrevocable authority to use
carol.

We added a fifth subject to the pattern: danny, an unknown subject, initially acces-
sible by carol only. The safety requirement is simple: make sure that bob will never
get direct access (and therefore irrevocable authority) to alice. The liveness prop-
erty will state that bob must be allowed to acquire access to danny to make sure that
carol’s behavior restrictions do not hinder here functionality as a service providing
entity.

Table 8.12 shows the caretaker pattern expressed in SCOLL.
Notice in particular how we have expressed the caretaker’s proxying behavior

exactly as described in section 5.5.5, where we modeled an entity that forwards to an
access tester. We want to rely on the caretaker to proxy between carol just as if
it its clients would invoke carol directly, even if carol’s decision to return a value
to her invoker depends on what she received in the same invocation.

208 Chapter 8. Patterns of Interaction and Collaboration

Table 8.12: The caretaker pattern in SCOLL

declare
permission: access/2
behavior: may.sendTo/3 may.getFrom/2 may.return/2

may.receive/1 may.returnFor/3 may.returnFor0/3
knowledge: did.sendTo/3 did.getFrom/3 did.return/2

did.receive/2 did.returnFor/3 did.returnFor0/2
did.getFromFor/4 did.getFromFor0/3

system
B:may.receive() A:may.sendTo(B,X) access(A,B) access(A,X)
=> A:did.sendTo(B,X);
A:did.sendTo(B X) => B:did.getFrom(X);
B:did.getFrom(X) => access(B,X);
A:may.getFrom(B) B:may.return(X) access(A,B) access(B,X)
=> A:did.getFrom(B,X);
A:did.getFrom(B,X) => access(A,X);
A:did.getFrom(B,X) => B:did.return(X);
B:may.returnFor(X,Y) A:may.sendTo(B,X) B:may.receive()
access(B,Y) access(A,X) access(A,B)
=> A:did.getFromFor(B,X,Y);
A:did.getFromFor(B,X,Y) => B:did.returnFor(X,Y);
A:did.getFromFor(B,X,Y) => access(A,Y);
B:did.returnFor(X,Y) => access(B,X);
A:may.getFrom(B) B:may.returnFor0(Y) access(A,B) access(B,Y)
=> B:did.returnFor0(Y) A:did.getFromFor0(B,Y);
B:may.return(Y) => B:may.returnFor(X,Y) B:may.returnFor0(Y);
A:did.getFromFor0(B,Y) => A:did.getFrom(B,Y);
B:did.returnFor0(Y) => B:did.return(Y);

behavior
UNKNOWN {=> may.receive() may.getFrom(A);

=> may.return(X) may.sendTo(A,X);}
PROXY { => may.receive();

isProxy(P) => may.getFrom(P);
isProxy(P) did.getFrom(X) => may.sendTo(P,X);
did.getFromFor0(P,X) => may.returnFor0(X);
did.getFromFor(P,X,Y) => may.returnFor(X,Y);}

ALICEMINIMAL { => may.receive();
isBob(B) isCaretaker(C) => may.sendTo(B,C);}

MINIMAL {}
subject

alice: ALICEMINIMAL bob: UNKNOWN
? carol: MINIMAL danny: UNKNOWN caretaker: PROXY

config
access(alice,alice) access(alice,bob) access(alice,carol)
access(alice,caretaker) isBob(alice bob)
isCaretaker(alice caretaker) isProxy(caretaker carol)
access(bob,bob) access(caretaker,caretaker)
access(caretaker,carol) access(carol,carol)
access(carol,danny) access(danny,danny)

goal
access(bob,danny) !access(bob,carol)

8.2. Revokable authority 209

To let the caretaker know who he should proxy to, we initialize his knowledge
with the private knowledge fact caretaker:isProxy(carol). In the same way,
we give alice initial knowledge with

alice:isBob(bob) and
alice:isCareTaker(caretaker)

because she has to introduce caretaker to bob.

8.2.2 Maximizing carol’s behavior.
Since we want to know what behavior we can allow carol, her name is marked with
a “?” in the subject part of the program.

Figure 8.6 shows the access graph for the combined results. The arcs in solid style
represent access in the initial graph. The arcs in dashed style are reachable in all results,
the dotted arcs represent access that is reachable in some solutions, but not in others.

alice

bob

carol

danny

caretaker

Figure 8.6: The combined access graph

Table 8.13 shows an overview of the results.
Let us check what is interesting about these results, starting with the three absolute

restrictions, common to all solutions:

carol:may.sendTo(danny,carol) If carol would send herself to danny,
danny would be able to pass her on to bob.

carol:may.return(carol) We suspected this already: carol should not re-
turn herself, at least not without requiring appropriate “proof of access” to other
confined subjects from its invokers.

210 Chapter 8. Patterns of Interaction and Collaboration

Table 8.13: The three solutions: possibilities for carol’s behavior restrictions

Solutions
carol:may.getFrom(danny) 1 0 1
carol:may.sendTo(bob,carol) 0 1 0
carol:may.sendTo(danny,carol) 0 0 0
carol:may.sendTo(danny,danny) 1 0 1
carol:may.receive() 1 0 0
carol:may.return(carol) 0 0 0
carol:may.returnFor0(carol) 0 0 0
carol:may.returnFor(bob,carol) 0 1 1
carol:may.returnFor(caretaker,carol) 0 1 1
carol:may.returnFor(danny,carol) 0 1 1

carol:may.returnFor0(carol) carol should not return herself when no
“proof of access” to any subject is provided by its invoker in the same invocation.

Let us now check what is specific in the three solutions:

solution 1 : This is the only solution in which carol is allowed to accept what is
sent to her : carol:may.receive(). Therefore this is the only solution that
will be useful, if carol is to play a general role in the pattern.

It is not surprising that carol is not allowed to send herself to bob as the effect
of such behavior would directly violate the safety property. The other restrictions
in this solution are all refinements of carol:may.return(carol).

This solution makes all access depicted in the access graph (Figure 8.6) reach-
able.

solutions 2 and 3 : These solutions are less uninteresting.

Carol is allowed to return herself to subjects that prove to her that they have
access to any subject, by sending her that subject:
carol:may.returnFor(,carol).

But from the fact that carol:may.receive() is forbidden, we can infer
that this behavior can never have an effect. When clicking on either of these
solutions, the results confirm our suspicion. For the same reason, carol cannot
get access to anybody but herself, danny and the subjects danny returns to
here.

In solution 2 carol is not allowed to request return values from danny. There-
fore she will not get access to bob and carol:may.sendTo(bob,carol)
is allowed .

8.2.3 Maximizing both alice’s and carol’s behavior
Let us now find the minimal restrictions for both alice and carol. Like in al-
ternative B of section 8.1.4, the combinations of these restrictions may provide more
interesting solutions.

We first make the following adaptations to the SCOLL pattern of table 8.12:

8.2. Revokable authority 211

1. Add a “?” mark before alice’s name in the subject part.

2. To make sure that alice and carol have sensible minimum behavior, add the
following rules to both their behavior:

=> may.receive() (alice’s behavior already had this rule)
did.receive(X) => may.returnFor(X,X)

3. To make sure that bob never gets access to danny directly from alice or
carol, add the following safety properties to the SCOLL pattern:

! alice:did.sendTo(bob,danny)

! carol:did.sendTo(bob,danny)

! bob:did.getFrom(alice,danny)

! bob:did.getFrom(carol,danny)

The resulting graph is shown in figure 8.7.

alice

bob

carol

danny

caretaker

Figure 8.7: The graph for the first three solutions found

SCOLLAR finds 3 solutions before timing out after 30 seconds, imposing restric-
tions on 31 behavior facts, that are presented in table 8.14. The table is split up in
restrictions for alice (top part) and restrictions for carol (bottom part).

The following facts are interesting to notice:

• In the first two solutions, neither bob nor danny get access to alice. There-
fore alice’s behavior is less restricted.

• For the same reason, in the first two solutions carol is allowed to return herself
to invokers that prove to here that they have access to alice:
carol:may.returnFor(alice,carol).

212 Chapter 8. Patterns of Interaction and Collaboration

Table 8.14: The first three solutions for alice’s and carol’s behavior restrictions

Solutions
alice:may.sendTo(bob,alice) 0 0 1
alice:may.sendTo(bob,carol) 0 0 0
alice:may.sendTo(bob,danny) 0 0 0
alice:may.sendTo(caretaker,alice) 1 0 1
alice:may.sendTo(carol,alice) 1 0 1
alice:may.sendTo(danny,alice) 0 0 1
alice:may.sendTo(danny,carol) 0 0 0
alice:may.return(carol) 1 1 0
alice:may.return(danny) 1 1 0
alice:may.returnFor0(carol) 1 1 0
alice:may.returnFor0(danny) 1 1 0
alice:may.returnFor(alice,carol) 0
alice:may.returnFor(bob,carol) 0
alice:may.returnFor(caretaker,carol) 0
alice:may.returnFor(danny,carol) 1 1 0
carol:may.sendTo(bob,alice) 0 1 1
carol:may.sendTo(bob,carol) 0 0 0
carol:may.sendTo(bob,danny) 0 0 0
carol:may.sendTo(danny,alice) 0 1 1
carol:may.sendTo(danny,carol) 0 0 0
carol:may.return(alice) 0 1 1
carol:may.return(carol) 0 0 0
carol:may.returnFor0(alice) 0 1 1
carol:may.returnFor0(carol) 0 0 0
carol:may.returnFor(alice,carol) 1 1 0
carol:may.returnFor(bob,alice) 0 1 1
carol:may.returnFor(bob,carol) 0 0 0
carol:may.returnFor(caretaker,alice) 0 1 1
carol:may.returnFor(caretaker,carol) 0 0 0
carol:may.returnFor(danny,alice) 0 1 1
carol:may.returnFor(danny,carol) 0 0 0

8.3. Confinement 213

8.3 Confinement

The confinement problem was described by Lampson in [Lam73]. Saltzer and Schroeder
[SS73] defined the confinement problem as follows:

“Allowing a borrowed program to have access to data, while ensuring that the pro-
gram cannot release the information.”

In the context of this work, taking into account the difference between permission
and authority, we adapt this definition to:

Definition 31. “Giving an unknown subject authority, while ensuring that this does
not lead to the propagation of that authority beyond a predefined perimeter.”

SCOLLAR’s raison d’être is all about a generalized notion of confinement: to find
ways to restrict the permissions of the subjects and the behavior of the relied-upon
subjects in a pattern, that prevent authority from propagating beyond the limits set by
a safety policy.

SCOLLAR may come up with different solutions for different situations. There
may also be situations where no solution is found. We use SCOLLAR to find, investi-
gate, and understand precisely defined patterns of interaction that can be applied over
again in situations that are similar enough to be recognizable instances of the pattern.
The confinement perimeter is defined by the safety properties in that pattern.

We can also use SCOLL to express a strict interpretation of the confinement prob-
lem (Definition 31) that minimizes the theoretically feasible confinement perimeter.
The membrane pattern expresses the strictest sensible interpretation of this problem:
subjects whose behavior is unknown but whose permissions do not include access to
each other, should be allowed to communicate indirectly, but should never get access
to each other.

We cannot interpret the confinement problem more strictly that this, without losing
its general relevance for all sorts of authority. Suppose that a system is able to prevent
two unknown subjects that do have access to each other (and thus are allowed and able
to use each other) from delegating (portable) authority to each other. Even then, the
system cannot prevent them from using their authority on each other’s behalf. As we
have seen in section 8.1, a subject’s intention is a matter of its behavior, and is by
definition not controlled for unknown subjects.

8.3.1 Inescapable Interposition: The Membrane Pattern

The membrane pattern relies on the behavior of subjects that are inter-positioned be-
tween the two parties that have to be kept permission-separated. In that sense it is
similar to the caretaker pattern, where bob and carol were permission-separated by
the caretaker.

Contrary to the caretaker pattern that relies on the restricted behavior of carol, the
membrane pattern does not depend on behavior restrictions in either of the permission-
separated subjects. Instead, the inter-positioned subjects must make sure themselves
that they always stay inter-positioned.

This can be achieved by relied-upon proxies that wrap every argument into a proxy,
before passing it on to the subject on the other side of the confinement barrier (mem-
brane). Because this proxy also has this “wrapping” behavior, similar to the behavior
of the inter-positioned subject that created the proxy, the permission-separated subjects

214 Chapter 8. Patterns of Interaction and Collaboration

will always remain permissions-separated. By being consistently inter-positioned be-
tween the confined subjects, these proxies will have complete control over the authority
the confined subjects can propagate to each other.

The membrane pattern was already described in section 6.9 to give an example of
how subject aggregation can be used in practice. The confined subjects each model
one of the originally permission-separated entities together with its potential offspring.
Because these subjects are modeled with completely unrestricted behavior, and each of
them is given access to itself, the aggregation is safe.

The inter-positioned subjects (proxies) each model an originally inter-positioned
entity, and all other proxying entities created at runtime that proxy for a confined entity
modeled by the same confined subject. Because the inter-positioned subjects all have
the same behavior, the aggregation is safe. The proxies get access to each other because
of their mutual child relation that models the aggregation.

The subjects to be kept permission-separated are alice and bob. The inter-
positioned proxies upon whose behavior we rely are proxyAlice and proxyBob.

Whereas the actual implementation of the pattern may provide a challenge to avoid
an explosion of inter-positioned proxies, its representation is SCOLL is very simple.
Figure 8.8 shows the membrane pattern in SCOLL. It tells SCOLLAR to look for all
necessary restrictions in the behavior of both authority-separated subjects: alice and
bob.

The Solution

Figure 8.9 shows the single solution SCOLLAR found to the pattern. No restrictions
have to be put on neither of the confined subjects alice and bob. Both subjects are
kept permission-separated as can be seen from the graph. This means that the pattern
is safe for use with untrusted subjects.

Applying the Membrane Pattern

The membrane pattern shows the advantages of relying on the behavior of subjects to
impose safety requirements. The pattern can be applied for different kinds of confine-
ment assignments, simply by adapting the behavior of the relied-upon proxies. For
instance, if we make sure that all proxies are connected to a controller subject, and
that all proxies respond to a revoke command from that controller by stopping all col-
laborative behavior, we have a revocation pattern in which all authority that was ever
provided to the confined subject(s) can be revoked, without relying on the restrictions
in any other subject than the ones especially provided for that purpose.

Since the membrane pattern does not rely on any restrictions in the behavior of the
entities on either side of the barrier, it is applicable in symmetrical conditions where
two equally important worlds have to be permission-separated, as well as in asymmet-
rical conditions where the part inside the membrane is to be protected from the world
outside.

8.4 Delegation Considered Harmful for Confinement?
In 1984 Boebert claimed in a short note [Boe84] that “unmodified” capability machines
are unable to enforce the ∗-property, because: “the right to exercise access carries with
it the right to propagate access”.

8.4. Delegation Considered Harmful for Confinement? 215

declare
permission: access/2
behavior: may.sendTo/3 may.getFrom/2 may.return/2 may.endow/3
may.receive/1 may.returnFor/3 may.returnFor0/2
knowledge: did.sendTo/3 did.getFrom/3 did.return/2
did.receive/2 did.returnFor/3 did.returnFor0/2
did.getFromFor/4 did.getFromFor0/3 was.endowedWith/2

system
B:may.receive() A:may.sendTo(B,X) access(A,B)
access(A,X) => A:did.sendTo(B X);

A:did.sendTo(B X) => B:did.getFrom(X);
B:did.getFrom(X) => access(B,X);
A:may.getFrom(B) B:may.return(X) access(A,B)
access(B,X) => A:did.getFrom(B,X);

A:did.getFrom(B,X) => access(A,X);
A:did.getFrom(B,X) => B:did.return(X);
B:may.returnFor(X,Y) A:may.sendTo(B,X) B:may.receive()
access(B,Y) access(A,X) access(A,B)
=> A:did.getFromFor(B,X,Y);

A:did.getFromFor(B,X,Y) => B:did.returnFor(X,Y);
A:did.getFromFor(B,X,Y) => access(A,Y);
B:did.returnFor(X,Y) => access(B,X);
access(A,B) access(B,Y)
A:may.getFrom(B) B:may.returnFor0(Y)
=> B:did.returnFor0(Y) A:did.getFromFor0(B,Y);

B:may.return(Y)
=> B:may.returnFor(X,Y) B:may.returnFor0(Y);

A:did.getFromFor0(B,Y) => A:did.getFrom(B,Y);
B:did.returnFor0(Y) => B:did.return(Y);
child(P,C) => access(P,C) myChild(P,C);
child(P,C) access(P,X) P:may.endow(C,X)
=> C:was.endowedWith(X);

behavior
MEMBRANE { was.endowedWith(T) => target(T);
=> may.receive();
target(T) => may.getFrom(T);
did.getFrom(X) myChild(C) target(T) =>
=> may.endow(C,X) may.sendTo(T,C);

did.getFrom(P,X) myChild(C) => may.endow(C,X) may.return(C);}
MINIMAL {}

subject alice:MINIMAL ?bob:MINIMAL
proxyAlice:MEMBRANE proxyBob:MEMBRANE

config
access(alice,alice) access(bob,bob)
access(proxyAlice,proxyAlice)
access(proxyBob,proxyBob) access(alice,proxyBob)
access(bob,proxyAlice) access(proxyAlice,alice)
access(proxyBob,bob) target(proxyAlice alice)
target(proxyBob bob) alice:child(alice,alice) child(bob,bob)
child(proxyAlice,proxyBob) child(proxyBob,proxyAlice)

goal
!access(bob,alice !access(alice,bob)

Figure 8.8: The membrane pattern in SCOLL.

216 Chapter 8. Patterns of Interaction and Collaboration

alice

proxyAlice

proxyBob

bob

solutions

Figure 8.9: The unique solution to the membrane pattern: no restrictions are necessary.
The pattern is safe for use with unknown subjects alice and bob.

Miller claims to have laid this problem to rest in chapter 11 of [Mil06b]. The
only reason we dig it back up here is: to analyze it in terms of SCOLL patterns and
to learn from the confusion this note has caused until very recently, in papers with a
considerable impact, such as [KL87, Gon89, WBDF97, HKN05].

8.4.1 The ∗-Property

The ∗-property (star-property) is multi-level security policy in which all subjects get
a clearance level and all objects get a confidentiality level. There is a partial order
between the clearance levels, a one-to-one correspondence between clearance levels
and confidentiality levels, and a corresponding partial order between the confidentiality
levels.

The ∗-property states: agents should be able to write to all objects with a confiden-
tiality level above (and including) the agent’s corresponding level of clearance and to
read from all levels below (and including) the agent’s corresponding level of clearance,
but no agent should be able to write strictly below that level, or read strictly above that
level.

8.4.2 Boebert’s Proof

Boebert claims that a policy that hands capabilities to agents corresponding to their
clearance level, cannot guarantee the ∗-property. His proof relies on the interpretation
of : “The right to exercise access carries with it the right to propagate access” as: “The
permission to exercise access carries with it the authority to propagate access”.

figure 8.10 shows a SCOLL pattern that models his proof set-up in [Boe84], using
system rules that model this interpretation:

8.4. Delegation Considered Harmful for Confinement? 217

Read authority implies take authority : If A has read authority to B, then A has the
permission to propagate all of B’s capability’s to A.

Write authority implies grant authority : If A has write authority to B, then A has
the permission to propagate all of A’s capability’s to B.

We will call this the “implied authority” interpretation of capability delegation. The
user is referred to Section 3.4 for a classification based on the relations between autho-
rity and permission.

The config part expresses the read and write permissions conform with the Multi
Level Security policy. The goal express the safety property for the pattern Boebert
used in his proof: highAgent should not have the authority to write to lowFile.

We use SCOLLAR in its first operation mode (See “Fixpoint Computation Mode”
in section 7.2.1). Since we have no subject for which we want to maximize its permit-
ted behavior, it will not matter whether we push the minimal fixpoint or the maximal
fixpoint button to get the result.

The Results

Table 8.15 shows an extraction of the fixpoint calculation results, containing knowledge
facts of lowAgent and highAgent. It clearly indicates that the safety property is
violated, as Boebert predicted. What happened can be derived from the knowledge
facts in that table:

The result of the fixpoint calculation shows that Boebert’s further reasoning was
sound: the safety property !highAgent:did.write(lowFile) is violated.

1. lowAgent:did.sendWriteAccessTo(lowfile,lowFile) :
lowAgent did grant his write access to lowFile.

2. highAgent:did.getWriteAccessFrom(lowfile,lowFile) :
highAgent took write access from lowFile.

3. highAgent:did.write(lowfile) : highAgent used his write access
to lowFile.

In the next section we will present the alternative interpretation of delegation in
capability systems: “The right to exercise access carries with it the right to propagate
access” will no longer be interpreted as: “The permission to exercise access carries
with it the authority to delegate access”, but as: “The permission to exercise access
carries with it the permission to delegate access”.

Notice that this is the only change with the original interpretation: authority
has been replaced by permission. This is a very important difference, certainly in
capability systems, where no lower bound is set for the authority that is guaranteed by
a permission. (See section 3.4).

8.4.3 A Closer Look at Delegation in Capability Systems
The system rules in the SCOLL program of figure 8.10 are not suitably refined to model
the original capabilities that were proposed by Dennis and Van Horn (DVH) [DH65].

218 Chapter 8. Patterns of Interaction and Collaboration

declare
permission: readAccess/2 writeAccess/2
behavior: may.sendTo/3 may.getFrom/2 may.read/2

may.getReadAccessFrom/3 may.getWriteAccesFrom/3
may.write/2 may.sendReadAccessTo/3
may.sendWriteAccesTo/3

knowledge: did.read/2 did.write/2
did.getReadAccessFrom/3 did.getWriteAccessFrom/3
did.sendReadAccessTo/3 did.sendWriteAccessTo/3

system
/*read and write rules*/
readAccess(A,B) A:may.readB) => A:did.read(B);
writeAccess(A,B) A:may.writeB) => A:did.write(B);
/*grant rules*/
writeAccess(A,B) readAccess(A,X) A:may.sendTo(B,X)
=> readAccess(B,X) A:did.sendReadAccessTo(B,X);

writeAccess(A,B) writeAccess(A,X) A:may.sendTo(B,X)
=> writeAccess(B,X) A:did.sendWriteAccessTo:(B,X);
/*take rules*/
readAccess(A,B) readAccess(B,X)
A:may.getReadAccessFrom(B,X)
=> readAccess(A,X) A:did.getReadAccessFrom(B,X);
readAccess(A,B) writeAccess(B,X)
A:may.getWriteAccessFrom(B,X)
=> writeAccess(A,X) A:did.getWriteAccessFrom(B,X);

behavior
UNKNOWN { => may.read(X) may.write(X)
may.getReadAccessFrom(A) may.sendReadAccessTo(A,X)
may.getWriteAccessFrom(A)may.sendWriteAccessTo(A,X);}

MINIMAL {}
subject

highAgent:UNKNOWN lowAgent:UNKNOWN lowFile:MINIMAL
config

readAccess(lowAgent,lowFile)
writeAccess(lowAgent,lowFile)
readAccess(highAgent,lowFile)

goal
!highAgent:did.write(lowFile)

Figure 8.10: The SCOLL pattern expressing the “implied authority” interpretation of
capability delegation.

8.4. Delegation Considered Harmful for Confinement? 219

Table 8.15: The knowledge facts from the fixpoint calculation

highAgent highAgent
lowAgent

lowFile
readAccess(highAgent,) 0 0 1
writeAccess(highAgent,) 0 0 1
highAgent:did.read() 0 0 1
highAgent:did.write() 0 0 1
highAgent:did.getReadAccessFrom(highAgent,) 0 0 0
highAgent:did.getReadAccessFrom(lowAgent,) 0 0 0
highAgent:did.getReadAccessFrom(lowFile,) 0 0 1
highAgent:did.getWriteAccessFrom(highAgent,) 0 0 0
highAgent:did.getWriteAccessFrom(lowAgent,) 0 0 0
highAgent:did.getWriteAccessFrom(lowFile,) 0 0 1
highAgent:did.sendReadAccessTo(highAgent,) 0 0 0
highAgent:did.sendReadAccessTo(lowAgent,) 0 0 0
highAgent:did.sendReadAccessTo(lowFile,) 0 0 1
highAgent:did.sendWriteAccessTo(highAgent,) 0 0 0
highAgent:did.sendWriteAccessTo(lowAgent,) 0 0 0
highAgent:did.sendWriteAccessTo(lowFile,) 0 0 1

lowAgent highAgent
lowAgent

lowFile
readAccess(lowAgent,) 0 0 1
writeAccess(lowAgent,) 0 0 1
lowAgent:did.read() 0 0 1
lowAgent:did.write() 0 0 1
lowAgent:did.getReadAccessFrom(highAgent,) 0 0 0
lowAgent:did.getReadAccessFrom(lowAgent,) 0 0 0
lowAgent:did.getReadAccessFrom(lowFile,) 0 0 1
lowAgent:did.getWriteAccessFrom(highAgent,) 0 0 0
lowAgent:did.getWriteAccessFrom(lowAgent,) 0 0 0
lowAgent:did.getWriteAccessFrom(lowFile,) 0 0 1
lowAgent:did.sendReadAccessTo(highAgent,) 0 0 0
lowAgent:did.sendReadAccessTo(lowAgent,) 0 0 0
lowAgent:did.sendReadAccessTo(lowFile,) 0 0 1
lowAgent:did.sendWriteAccessTo(highAgent,) 0 0 0
lowAgent:did.sendWriteAccessTo(lowAgent,) 0 0 0
lowAgent:did.sendWriteAccessTo(lowFile,) 0 0 1

220 Chapter 8. Patterns of Interaction and Collaboration

They are a safe but coarse approximation of how permissions and authority propagate
in capability systems. Because of that, the results of table 8.15 cannot be interpreted as
a proof that an actual (unmodified) capability system cannot enforce the ∗-property.

An appropriately refined version of the system rules is easy to find, if we take the
different kinds of capabilities DVH proposes into account. Miller suggests [Mil06a]
that Boebert’s system should have given appropriate segment-capabilities to the agents,
designating data segment that are reserved for the corresponding level of confidential-
ity, instead of giving the agents entry-capabilities. The interested reader is referred to
chapter 4 for a detailed account on these differences and to check that delegation in
DVH indeed requires an entry capability.

Since DVH did not provide native write-only-segment-capabilities (write permis-
sion is always combined with read permission), we think it is equally valid to classify
Boebert’s conjecture as a confusion between authority and permissions.

In DVH, like in more recent capability systems, no permissions other than access
to two subjects are needed to propagate the one subject to the other one. But the
combination of these two permissions does not come with a guaranteed authority that
the delegation will actually take place. It is the responder’s behavior (in this case the
behavior of lowFile) that will decide if it allows delegation or not. In DVH, like in
most systems, a file is not capable of receiving or returning anything else but data. That
means that, in our model the file subject can be trusted upon to be unwilling to return
or receive any capabilities.

That leads us to a third possible explanation for the confusion: did Boebert confuse
capabilities with data? At a certain level, capabilities are represented as bits in the
system. However, DVH makes sure that these bits have no power outside their proper
context: they only represent a capability when contained in the c-list of a process. (See
chapter 4).

Figure 8.16 shows a plain capability based SCOLL pattern with Boebert’s configu-
ration of subjects. This time we make sure the system rules require the responder’s con-
sent, by re-introducing the may.return and may.receive behavior predicates.

The SCOLL pattern can be interpreted to be a correction for either of the three
possible causes for Boebert’s conjecture.

The results of the maximal fixpoint calculation are shown in figure 8.11 (access
graph) and tables 8.17 to 8.22.

The graph shows no dashed arcs, which means that no access was propagated, even
when the file was unrestricted. From the result, we learn that capability systems do not
have to worry about their file’s behavior restrictions: the read and write capabilities,
when created as data diodes, are reliable enough. For the reader’s reference, the com-
plete results of an additional maximal fixpoint calculation of the same SCOLL
pattern are provided in tables 8.17 until 8.22.

8.5 Reference Monitoring
This section provides some examples of how security strategies based on reference
monitoring can be modeled in SCOLL.

8.5.1 Java’s Sandbox
The Java virtual machine (JVM) can restrict the access external code has to the re-
sources on the host computer. Usually, external code can use unlimited computation

8.5. Reference Monitoring 221

Table 8.16: Boebert’s pattern, using a sufficiently refined model of DVH capabilities

declare
permission: access/2
behavior: may.sendTo/3 may.getFrom/2 may.return/2
may.receive/1 may.sendDataTo/2 may.getDataFrom/2
may.returnData/1 may.receiveData/1

knowledge:did.sendTo/3 did.getFrom/3 did.return/2
did.receive/2 did.sendDataTo/2 did.getDataFrom/2
did.returnData/1 did.receiveData/1

system
B:may.receive() A:may.sendTo(B,X) access(A,B) access(A,X)
=> A:did.sendTo(B X);

A:did.sendTo(B X) => B:did.getFrom(X);
B:did.getFrom(X) => access(B,X);
A:may.getFrom(B) B:may.return(X) access(A,B) access(B,X);
=> A:did.getFrom(B,X);

A:did.getFrom(B,X) => access(A,X);
A:did.getFrom(B,X) => B:did.return(X);
B:may.receiveData() A:may.sendDataTo(B) access(A,B)
=> A:did.sendDataTo(B);

A:did.sendDataTo(B) => B:did.receiveData();
A:may.getDataFrom(B) B:may.returnData() access(A,B);
=> A:did.getDataFrom(B);

A:did.getDataFrom(B) => B:did.returnData();
A:did.getDataFrom(B) B:did.getDataFrom(C)
=> A:did.getDataFrom(C);

A:did.sendDataTo(B) B:did.sendDataTo(C)
=> A:did.sendDataTo(C);

A:did.sendDataTo(C) B:did.getDataFrom(C)
=> B:did.getDataFrom(A) A:did.sendDataTo(B);

behavior
UNKNOWN { => may.receive() may.getFrom(A) may.return(X)

may.sendTo(A,X) may.receiveData() may.getDataFrom(A)
may.returnData() may.sendDataTo(A);}

READCAP { isTarget(T) =>may.getDataFrom(T);
did.getDataFrom(A)=>may.returnData();}

WRITECAP { => may.receiveData();
did.receiveData() isTarget(T) => may.sendDataTo(T);}

MINIMAL {}
subject

highAgent:UNKNOWN lowAgent:UNKNOWN
rCap1:READCAP rCap2:READCAP wCap:WRITECAP
?lowFile:MINIMAL

config
access(highAgent,highAgent) access(highAgent,rCap1)
access(rCap1,lowFile) access(lowAgent,lowAgent)
access(lowAgent,rCap2) access(rCap2,lowFile)
access(lowAgent,wCap) access(wCap,lowFile)
rCap1:isTarget(lowFile)
rCap2:isTarget(lowFile) wCap:isTarget(lowFile)

goal
lowAgent:did.sendDataTo(lowFile)
lowAgent:did.getDataFrom(lowFile)
highAgent:did.getDataFrom(lowFile)
!highAgent:did.sendDataTo(lowFile)
!lowAgent:did.getDataFrom(highAgent)
!highAgent:did.sendDataTo(lowAgent)
!lowFile:did.getDataFrom(highAgent)

222 Chapter 8. Patterns of Interaction and Collaboration

Table 8.17: The maximal fixpoint results for highAgent.

highAgent
high- low- low-
Agent Agent rCap1 rCap2 wCap File

access(highAgent,) 1 0 1 0 0 0
highAgent:did.receiveData() 1
highAgent:did.returnData() 1
highAgent:did.getDataFrom() 1 1 1 1 1 1
highAgent:did.sendDataTo() 1 0 0 0 0 0
highAgent:did.getFrom() 1 0 1 0 0 0
highAgent:did.return() 1 0 1 0 0 0
highAgent:did.getFrom(highAgent,) 1 0 1 0 0 0
highAgent:did.getFrom(lowAgent,) 0 0 0 0 0 0
highAgent:did.getFrom(rCap1,) 0 0 0 0 0 0
highAgent:did.getFrom(rCap2,) 0 0 0 0 0 0
highAgent:did.getFrom(wCap,) 0 0 0 0 0 0
highAgent:did.getFrom(lowFile,) 0 0 0 0 0 0
highAgent:did.sendTo(highAgent,) 1 0 1 0 0 0
highAgent:did.sendTo(lowAgent,) 0 0 0 0 0 0
highAgent:did.sendTo(rCap1,) 0 0 0 0 0 0
highAgent:did.sendTo(rCap2,) 0 0 0 0 0 0
highAgent:did.sendTo(wCap,) 0 0 0 0 0 0
highAgent:did.sendTo(lowFile,) 0 0 0 0 0 0
highAgent:may.receive() 1
highAgent:may.receiveData() 1
highAgent:may.returnData() 1
highAgent:may.getFrom(,) 1 1 1 1 1 1
highAgent:may.getDataFrom() 1 1 1 1 1 1
highAgent:may.sendDataTo() 1 1 1 1 1 1
highAgent:may.return() 1 1 1 1 1 1
highAgent:may.sendTo(highAgent,) 1 1 1 1 1 1
highAgent:may.sendTo(lowAgent,) 1 1 1 1 1 1
highAgent:may.sendTo(rCap1,) 1 1 1 1 1 1
highAgent:may.sendTo(rCap2,) 1 1 1 1 1 1
highAgent:may.sendTo(wCap,) 1 1 1 1 1 1
highAgent:may.sendTo(lowFile,) 1 1 1 1 1 1

8.5. Reference Monitoring 223

Table 8.18: The maximal fixpoint results for lowAgent.

lowAgent
high- low- low-
Agent Agent rCap1 rCap2 wCap File

access(lowAgent,) 0 1 0 1 1 0
lowAgent:did.receiveData() 1
lowAgent:did.returnData() 1
lowAgent:did.getDataFrom() 0 1 0 1 1 1
lowAgent:did.sendDataTo() 1 1 1 1 1 1
lowAgent:did.getFrom() 0 1 0 1 1 0
lowAgent:did.return() 0 1 0 1 1 0
lowAgent:did.getFrom(highAgent,) 0 0 0 0 0 0
lowAgent:did.getFrom(lowAgent,) 0 1 0 1 1 0
lowAgent:did.getFrom(rCap1,) 0 0 0 0 0 0
lowAgent:did.getFrom(rCap2,) 0 0 0 0 0 0
lowAgent:did.getFrom(wCap,) 0 0 0 0 0 0
lowAgent:did.getFrom(lowFile,) 0 0 0 0 0 0
lowAgent:did.sendTo(highAgent,) 0 0 0 0 0 0
lowAgent:did.sendTo(lowAgent,) 0 1 0 1 1 0
lowAgent:did.sendTo(rCap1,) 0 0 0 0 0 0
lowAgent:did.sendTo(rCap2,) 0 0 0 0 0 0
lowAgent:did.sendTo(wCap,) 0 0 0 0 0 0
lowAgent:did.sendTo(lowFile,) 0 0 0 0 0 0
lowAgent:may.receive() 1
lowAgent:may.receiveData() 1
lowAgent:may.returnData() 1
lowAgent:may.getFrom() 1 1 1 1 1 1
lowAgent:CollectData() 1 1 1 1 1 1
lowAgent:may.sendDataTo() 1 1 1 1 1 1
lowAgent:may.return() 1 1 1 1 1 1
lowAgent:may.sendTo(highAgent,) 1 1 1 1 1 1
lowAgent:may.sendTo(lowAgent,) 1 1 1 1 1 1
lowAgent:may.sendTo(rCap1,) 1 1 1 1 1 1
lowAgent:may.sendTo(rCap2,) 1 1 1 1 1 1
lowAgent:may.sendTo(wCap,) 1 1 1 1 1 1
lowAgent:may.sendTo(lowFile,) 1 1 1 1 1 1

224 Chapter 8. Patterns of Interaction and Collaboration

Table 8.19: The maximal fixpoint results for rCap1.

rCap1
high- low- low-
Agent Agent rCap1 rCap2 wCap File

access(rCap1,) 0 0 0 0 0 1
rCap1:did.receiveData() 1
rCap1:did.returnData() 1
rCap1:did.getDataFrom() 0 1 0 1 1 1
rCap1:did.sendDataTo() 0 0 0 0 0 0
rCap1:did.getFrom() 0 0 0 0 0 0
rCap1:did.return() 0 0 0 0 0 0
rCap1:did.getFrom(highAgent,) 0 0 0 0 0 0
rCap1:did.getFrom(lowAgent,) 0 0 0 0 0 0
rCap1:did.getFrom(rCap1,) 0 0 0 0 0 0
rCap1:did.getFrom(rCap2,) 0 0 0 0 0 0
rCap1:did.getFrom(wCap,) 0 0 0 0 0 0
rCap1:did.getFrom(lowFile,) 0 0 0 0 0 0
rCap1:did.sendTo(highAgent,) 0 0 0 0 0 0
rCap1:did.sendTo(lowAgent,) 0 0 0 0 0 0
rCap1:did.sendTo(rCap1,) 0 0 0 0 0 0
rCap1:did.sendTo(rCap2,) 0 0 0 0 0 0
rCap1:did.sendTo(wCap,) 0 0 0 0 0 0
rCap1:did.sendTo(lowFile,) 0 0 0 0 0 0
rCap1:may.receive() 0
rCap1:may.receiveData() 0
rCap1:may.returnData() 1
rCap1:may.getFrom() 0 0 0 0 0 0
rCap1:may.getDataFrom() 0 0 0 0 0 1
rCap1:may.sendDataTo() 0 0 0 0 0 0
rCap1:may.return() 0 0 0 0 0 0
rCap1:may.sendTo(highAgent,) 0 0 0 0 0 0
rCap1:may.sendTo(lowAgent,) 0 0 0 0 0 0
rCap1:may.sendTo(rCap1,) 0 0 0 0 0 0
rCap1:may.sendTo(rCap2,) 0 0 0 0 0 0
rCap1:may.sendTo(wCap,) 0 0 0 0 0 0
rCap1:may.sendTo(lowFile,) 0 0 0 0 0 0
rCap1:isTarget() 0 0 0 0 0 1

8.5. Reference Monitoring 225

Table 8.20: The maximal fixpoint results for rCap2.

rCap2
high- low- low-
Agent Agent rCap1 rCap2 wCap File

access(rCap2,) 0 0 0 0 0 1
rCap2:did.receiveData() 1
rCap2;did.returnData() 1
rCap2:did.getDataFrom() 0 1 0 1 1 1
rCap2:did.sendDataTo() 0 0 0 0 0 0
rCap2:did.getFrom() 0 0 0 0 0 0
rCap2:did.return() 0 0 0 0 0 0
rCap2:did.getFrom(highAgent,) 0 0 0 0 0 0
rCap2:did.getFrom(lowAgent,) 0 0 0 0 0 0
rCap2:did.getFrom(rCap1,) 0 0 0 0 0 0
rCap2:did.getFrom(rCap2,) 0 0 0 0 0 0
rCap2:did.getFrom(wCap,) 0 0 0 0 0 0
rCap2:did.getFrom(lowFile,) 0 0 0 0 0 0
rCap2:did.sendTo(highAgent,) 0 0 0 0 0 0
rCap2:did.sendTo(lowAgent,) 0 0 0 0 0 0
rCap2:did.sendTo(rCap1,) 0 0 0 0 0 0
rCap2:did.sendTo(rCap2,) 0 0 0 0 0 0
rCap2:did.sendTo(wCap,) 0 0 0 0 0 0
rCap2:did.sendTo(lowFile,) 0 0 0 0 0 0
rCap2:may.receive() 0
rCap2:may.receiveData() 0
rCap2:may.returnData() 1
rCap2:Collect() 0 0 0 0 0 0
rCap2:may.getDataFrom() 0 0 0 0 0 1
rCap2:may.sendDataTo() 0 0 0 0 0 0
rCap2:may.return() 0 0 0 0 0 0
rCap2:may.sendTo(highAgent,) 0 0 0 0 0 0
rCap2:may.sendTo(lowAgent,) 0 0 0 0 0 0
rCap2:may.sendTo(rCap1,) 0 0 0 0 0 0
rCap2:may.sendTo(rCap2,) 0 0 0 0 0 0
rCap2:may.sendTo(wCap,) 0 0 0 0 0 0
rCap2:may.sendTo(lowFile,) 0 0 0 0 0 0
rCap2:isTarget() 0 0 0 0 0 1

226 Chapter 8. Patterns of Interaction and Collaboration

Table 8.21: The maximal fixpoint results for wCap.

wCap
high- low- low-
Agent Agent rCap1 rCap2 wCap File

access(wCap,) 0 0 0 0 0 1
wCap:did.receiveData() 1
wCap:did.returnData() 1
wCap:did.getDataFrom() 0 0 0 0 0 0
wCap:did.sendDataTo() 1 1 1 1 1 1
wCap:did.getFrom() 0 0 0 0 0 0
wCap:did.return() 0 0 0 0 0 0
wCap:did.getFrom(highAgent,) 0 0 0 0 0 0
wCap:did.getFrom(lowAgent,) 0 0 0 0 0 0
wCap:did.getFrom(rCap1,) 0 0 0 0 0 0
wCap:did.getFrom(rCap2,) 0 0 0 0 0 0
wCap:did.getFrom(wCap,) 0 0 0 0 0 0
wCap:did.getFrom(lowFile,) 0 0 0 0 0 0
wCap:did.sendTo(highAgent,) 0 0 0 0 0 0
wCap:did.sendTo(lowAgent,) 0 0 0 0 0 0
wCap:did.sendTo(rCap1,) 0 0 0 0 0 0
wCap:did.sendTo(rCap2,) 0 0 0 0 0 0
wCap:did.sendTo(wCap,) 0 0 0 0 0 0
wCap:did.sendTo(lowFile,) 0 0 0 0 0 0
wCap:may.receive() 0
wCap:may.receiveData() 1
wCap:may.returnData() 0
wCap:may.getFrom() 0 0 0 0 0 0
wCap:may.getDataFrom() 0 0 0 0 0 0
wCap:may.sendDataTo() 0 0 0 0 0 1
wCap:may.return() 0 0 0 0 0 0
wCap:may.sendTo(highAgent,) 0 0 0 0 0 0
wCap:may.sendTo(lowAgent,) 0 0 0 0 0 0
wCap:may.sendTo(rCap1,) 0 0 0 0 0 0
wCap:may.sendTo(rCap2,) 0 0 0 0 0 0
wCap:may.sendTo(wCap,) 0 0 0 0 0 0
wCap:may.sendTo(lowFile,) 0 0 0 0 0 0
wCap:isTarget() 0 0 0 0 0 1

8.5. Reference Monitoring 227

Table 8.22: The maximal fixpoint results for lowFile.

lowFile
high- low- low-
Agent Agent rCap1 rCap2 wCap File

access(lowFile,) 0 0 0 0 0 0
lowFile:did.receiveData() 1
lowFile:did.returnData() 1
lowFile:did.getDataFrom() 0 0 0 0 0 0
lowFile:did.sendDataTo() 0 0 0 0 0 0
lowFile:did.getFrom() 0 0 0 0 0 0
lowFile:did.return() 0 0 0 0 0 0
lowFile:did.getFrom(highAgent,) 0 0 0 0 0 0
lowFile:did.getFrom(lowAgent,) 0 0 0 0 0 0
lowFile:did.getFrom(rCap1,) 0 0 0 0 0 0
lowFile:did.getFrom(rCap2,) 0 0 0 0 0 0
lowFile:did.getFrom(wCap,) 0 0 0 0 0 0
lowFile:did.getFrom(lowFile,) 0 0 0 0 0 0
lowFile:did.sendTo(highAgent,) 0 0 0 0 0 0
lowFile:did.sendTo(lowAgent,) 0 0 0 0 0 0
lowFile:did.sendTo(rCap1,) 0 0 0 0 0 0
lowFile:did.sendTo(rCap2,) 0 0 0 0 0 0
lowFile:did.sendTo(wCap,) 0 0 0 0 0 0
lowFile:did.sendTo(lowFile,) 0 0 0 0 0 0
lowFile:may.receive() textbf1
lowFile:may.receiveData() 1
lowFile:may.returnData() 1
lowFile:may.getFrom() 1 1 1 1 1 1
lowFile:may.getDataFrom() 1 1 1 1 1 1
lowFile:may.sendDataTo() 1 1 1 1 1 1
lowFile:may.return() 1 1 1 1 1 1
lowFile:may.sendTo(highAgent,) 1 1 1 1 1 1
lowFile:may.sendTo(lowAgent,) 1 1 1 1 1 1
lowFile:may.sendTo(rCap1,) 1 1 1 1 1 1
lowFile:may.sendTo(rCap2,) 1 1 1 1 1 1
lowFile:may.sendTo(wCap,) 1 1 1 1 1 1
lowFile:may.sendTo(lowFile,) 1 1 1 1 1 1

228 Chapter 8. Patterns of Interaction and Collaboration

highAgent

readCap1

lowAgent

readCap2 writeCap

lowFile

Figure 8.11: The resulting access graph

time and memory on the host computer, and is allowed to access the web server from
which the code was downloaded. The JVM has a built-in reference monitor: the Java
Security Manager (JSM). The JSM intercepts method calls, and prevents their execu-
tion when necessary by throwing a security exception.

The sandbox reference monitor knows two principals: trusted and untrusted.
It safely approximates the principal on whose behalf a security-sensitive method is
called, by assuming that the method is called on behalf of untrusted as soon as
one frame in the call stack leading to that call originates from untrusted. For that
purpose, stack frames are adorned with the class-loader of the class whose method is
invoked in the frame. The trusted and untrusted principals can be recognized
by that class-loader.

Contrary to capability-based security policies, enforcing the sandbox policy does
not require secure programming: it is the responsibility of the JSM. The programmer
relies on it to work as specified. Of course, the behavior of the relied-upon entities can
still be programmed to implement further confinement of authority. Section 8.5.3 will
show why this is still necessary. Since we don’t need to model behavior, we can model
the policy in SCOLL using only permissions and system rules.

A SCOLL pattern for a simplified sandbox is presented in figure 8.12. It models
a sandbox policy that does not allow applets to access the web, not even their own
download site. We will release this restriction later.

Subjects and Predicates

We use the unary predicate trusted, to indicate entities that were loaded from the
system’s main class loader: the class loader that only loads local code, not remote code
(applets). Two aggregated subjects will suffice to model all trusted entities: alice and
carol. A third aggregated subject, bob, will model all entities loaded from remote
(untrusted) code. Notice that we did not use the term “relied-upon” in this case, to
reflect the fact that we do not rely on behavior, even if it is “trusted”. We rely only on
the Java Security Manager.

8.5. Reference Monitoring 229

declare
permission: safe/1 trusted/1 call/2
behavior:
knowledge:

system
/* all entities are permitted to call safe entities */
safe(X) => call(A,X);
/* trusted entities can call all entities */
trusted(A) => call(A,X);

behavior
subject

alice
bob
carol

config
trusted(alice)
trusted(carol)
safe(carol)

goal
!call(bob,alice)

Figure 8.12: The SCOLL pattern expressing Java’s sandbox, excluding the “call home”
policy.

We use the unary predicate safe to indicate software entities that can be used at
no risk, because they do not represent a protected resource. Untrusted subjects, like
bob, are considered to be safe: they cannot represent any protected resources.

Both permissions are assumed to be static: safe entities can never become unsafe,
trusted entities can never become untrusted, and vice versa.

The binary predicate call expresses the permission of a subject to call another
subject, either directly or indirectly. The call permission is different from the access
permission we encountered in capability systems in three aspects:

1. The access permission in capability systems only regulates direct invocation,
whereas the call permission regulates indirect invocation as well.

2. Like all permissions in pure reference monitoring strategies, call permissions
are not usable as references (designation) to the invokable subject. Even as Java
is a memory safe language, and references are unforgeabe, references cannot be
used as permissions and permissions cannot be used as references in the sandbox
policy.

3. Like all permissions in pure reference monitoring strategies, call permissions
do not guarantee the opportunity to use them. To use a permission, one may
sometimes need a reference to the entity to be invoked directly, or to an entity
that has a reference to the entity to be invoked indirectly, and so on. But because
references are not explicitly modeled here, we must assume that the opportunity
will always be present anyway, to make sure our model is a safe approximation
of the real program.

The predicates trusted, safe, and call are all permission predicates: the

230 Chapter 8. Patterns of Interaction and Collaboration

entities do not have to be aware of them. Because the entities are not relied upon to
restrict the use of their permissions in any way, we do not need behavior predicates.

System Rules

/* all entities are permitted to call safe entities */
safe(X) => call(A,X);
/* trusted entities can call all entities */
trusted(A) => call(A,X);

The system rules simply state the rules that are imposed by the reference monitor at
runtime upon inspection of the call stack: for subject A to be allowed to invoke subject
X directly or indirectly, (call(A,X)), A must be trusted or X must be safe.

Note that the call permission is only transitive in situations where the caller is
trusted or where the callee is safe. The system rules to express this restricted transitivity
would therefore look like this:

call(A,B) call(B,X) safe(X) => call(A,X);

trusted(A) call(A,B) call(B,X) => call(A,X);

Both situations are already covered by the simpler system rules.

Interpretation of the SCOLL Results

The fixpoint calculation results are shown in figure 8.13. The graph shows the call
permissions that can be derived from the system rules. As expected, bob has no per-
mission to call alice directly or indirectly. Because all entities are aggregated accord-
ing to their static permissions safe and trusted the pattern safely approximates all
Java programs, and the result constitutes a real proof about the safety property: no un-
trusted entities modeled by bob will ever have a permission to call any unsafe entities
modeled by alice, neither directly nor indirectly.

Note that the aggregation strategy we use to arrive at this simple model is not fitted
for proving the safety of the “call home” permission. Different untrusted entities may
be loaded from different sites, and are allowed to access their own download site but
not each other’s.

Safe aggregation dictates that, if we choose to aggregate every entity that provides
access to an applet download site into the same subject, we have to give the safe
permission to that subject, because it is safe to at least one untrusted applet. All trusted
entities that provide access to an applet download site will thus be aggregated into
carol, not alice.

Our pattern is then still a safe approximation, but not refined enough to prove that
untrusted entities cannot access each other’s download site. To solve this problem, we
will refine the safe permission in section 8.5.2.

8.5.2 Allowing Applets to Call Home
To model the permissions for applets to call their own download site, we will single out
one download site, and aggregate all entities of the applets downloaded from that site
into bob. All entities in the other applets will be aggregated into a new subject other.
The trusted entities that give access to these sites will be modeled as bobSite and
otherSite. The entities that are completely safe are modeled as carol. The subject
otherSite aggregates all trusted entities that give access to any other download site.

8.5. Reference Monitoring 231

alice

bob

carol

alice
alice bob carol

safe(alice) 0
trusted(alice) 1
call(alice,) 1 1 1

bob
alice bob carol

safe(bob) 1
trusted(bob) 0
call(bob,) 0 1 1

carol
alice bob carol

safe(carol) 1
trusted(carol) 1
call(carol,) 1 1 1

Figure 8.13: The result of the fixpoint calculation for the Java sandbox.

232 Chapter 8. Patterns of Interaction and Collaboration

Using the refinement technique explained in section 5.5, we refine the unary predi-
cate safe into the binary predicate safeFor.

The refined pattern is shown in figure 8.14.

declare
permission: safe/1 safeFor/2 trusted/1 call/2
behavior:
knowledge:

system
safe(X) => safeFor(A,X);
safeFor(A,X) => call(A,X);
trusted(A) => call(A,X);

behavior
subject

alice
bob
other
bobSite
otherSite
carol

config
trusted(alice) trusted(carol)
safe(carol) safe(bob) safe(other)
safeFor(bob,bobSite) safeFor(other,otherSite)

goal
!call(bob,alice)
!call(other,alice)
!call(bob,otherSite)
!call(other,bobSite)

Figure 8.14: The SCOLL pattern expressing Java’s sandbox, including the “call home”
policy.

The system rules are adapted to the refinement as usual. The subject part of the
SCOLL pattern is extended with the extra subjects, and the config part uses the re-
fined safeFor permissions to indicate that bobSite is safe to use for bob, and
otherSite is safe to use for other. The goals are adapted accordingly to indicate
what safety properties we expect to hold.

The graph depicting the call permissions is presented in figure 8.15. The detailed
results are shown in figure 8.16.

Notice that bob cannot invoke otherSite and other cannot invoke bobSite,
while each of them is allowed access to their own site. This means that the safety pro-
perties are guaranteed as far as the entities of the applets that originate from bob’s site
are concerned. Because no other assumptions were made about bob and bobSite, a
similar aggregation model can be made for every site from which applets can be down-
loaded to prove the safety properties for the applets originating from that site. From
this observation follows directly that the safety properties are valid for all applets.

8.5. Reference Monitoring 233

alice

bobother

bobSite otherSite

carol

Figure 8.15: The call permission graph

8.5.3 Java’s Sandbox and Authority Control
The goal of the sandbox strategy is to prevent direct or indirect invocation of unsafe
entities by untrusted entities. Of course, we have seen in section 1.3.3 already (Figure
1.2), authority flow is not restricted to a single, direct or indirect, invocation :

• In situations where the trusted unsafe entity alice invokes the untrusted entity
bob, bob can have authority over alice, for instance if alice would probe
bob to get instructions from him about what to do when bob’s method is no
longer on the call stack. If that is to be prevented, we should restrict alice’s
behavior, and rely on it that she does not invoke bob with the intention to ask
instructions and execute them.

• Even when bob’s and alice’s methods are never on the call stack at the same
time, there are ways for bob to causally influence alice. For instance, a trusted
and safe third party, like carol, may get instructions from bob about what
alice should do. Later, when bob’s method has disappeared from the stack,
alice could get these instruction from carol.

Therefore, while the sandbox strategy is very effective to limit the permissions
of untrusted entities, it cannot by itself guarantee authority confinement. Permission
restrictions alone are not sufficient to restrict the authority of untrusted entities to cause
the same effects of having the permission.

Most criticism on the sandbox model focusses on its lack of expressive power:
its inflexible all-or-nothing policy. However, since safety is the main goal, it is even
more important to acknowledge the fact that, even with the most drastical form of

234 Chapter 8. Patterns of Interaction and Collaboration

alice
alice bob other bobSite otherSite carol

safe(alice) 0
trusted(alice) 1
call(alice,) 1 1 1 1 1 1
safeFor(alice,) 0 1 1 0 0 1
bob

alice bob other bobSite otherSite carol
safe(bob) 1
trusted(bob) 0
call(bob,) 0 1 1 1 0 1
safeFor(bob,) 0 1 1 1 0 1
other

alice bob other bobSite otherSite carol
safe(other) 1
trusted(other) 0
call(other,) 0 1 1 0 1 1
safeFor(other,) 0 1 1 0 1 1
bobSite

alice bob other bobSite otherSite carol
safe(bobSite) 0
trusted(bobSite) 1
call(bobSite,) 1 1 1 1 1 1
safeFor(bobSite,) 0 1 1 0 0 1
otherSite

alice bob other bobSite otherSite carol
safe(otherSite) 0
trusted(otherSite) 1
call(otherSite,) 1 1 1 1 1 1
safeFor(otherSite,) 0 1 1 0 0 1
carol

alice bob other bobSite otherSite carol
safe(carol) 1
trusted(carol) 1
call(carol,) 1 1 1 1 1 1
safeFor(carol,) 0 1 1 0 0 1

Figure 8.16: The result of the fixpoint calculation for the “call home” sandbox policy.

8.5. Reference Monitoring 235

sandboxing, we still have to rely on the behavior of the trusted entities to restrict the
authority.

We therefore have to perform a behavior-based analysis of eventual authority, to be
sure that the required safety properties regarding the authority of the untrusted entities
hold. The results of such an analysis will depend on the actual Java program that is
being modeled in SCOLL and on the precision the model.

Notice also that it may not always be appropriate to treat all locally loaded classes
and their instances as trusted. In situations where this is not appropriate, sandbox-
ing starts from an approximation that is not only crude but also unsafe.

8.5.4 Stack Walking

We have discussed stack walking briefly in section 8.1.2, and we will now express a
simple example of this strategy in SCOLL, to take the discussion to a more formal
level. At this stage we want to remind the reader once more that SCOLL was meant
to express and examine behavior-based strategies, and that when safety in a pattern
is broken, nothing can be inferred about the unsafety of the actual program: the safe
approximation of the behavior can have been too coarse.

Contrary to sandbox strategies, stack walking is a behavior-based strategy: entities
are relied upon to enable or disable their permissions on purpose.

We will not investigate if the behavior of enabling/disabling permissions can be
proven to be a sufficiently restrictive strategy in general. That is left as interesting
future work. In section 8.5.5 we will discuss some limitations of the strategy.

Another interesting topic for future research would be to check if accurate enabling
and disabling behavior could be expressed separately from the functional part of the
behavior. If such a division of concerns could be established, this would constitute a
considerable improvement to the security maintainability of the software.

In “The Structure of Authority: Why Security is Not a Separable Concern” [MTS05]
Miller et all. argue that building secure software is a design and development concern,
and that POLA should be used as a major design principle during the building of se-
cure software. They acknowledge that a degree of separation is possible in the sense
of Dijkstra’s suggestion: that we temporarily separate concerns as a conceptual aid for
reasoning about complex systems [Dij82]. In “On the importance of the separation-of-
concerns principle in secure software engineering” [WPJV03] De Win et all. shown
that at least a limited form of separation of concerns for security aspects can become
feasible, using new engineering techniques like aspect oriented programming.

To see if a SCOLL analysis can help to shed some light on this issue, we will
use permission-enabling behavior to build non-confusable deputies. We modeled the
capability-based strategy in section 8.1.3 where we showed that for a deputy entity to
protect itself from being confused by its clients it suffices to require capabilities from
the clients and to use only these capabilities for the client’s purpose.

We provide a SCOLL model for a simple version of stack walking that only has
permission enabling, not disabling. We show how to model this in SCOLL, and dis-
cuss the solutions found by SCOLLAR. We do not claim that our model is the most
appropriate one. Different implementations of stack walking may express different fla-
vors of the strategy. Our model corresponds to a simple variant that allows entities to
put a permission on the stack while calling another entity. Doing so will dynamically
delegate that permission to the entities that will be subsequently invoked. The refer-
ence monitor will check the stack when a resource is called, and only allow the call

236 Chapter 8. Patterns of Interaction and Collaboration

if it detects the permission on the stack. A non-monotonic version that also allows
revocation of permissions that were put the stack is left as interesting future work.

Subjects and Predicates

The subjects will be the ones of the confused deputy example in section 8.1.3, except
for the deputy itself. To express the deputy’s intentional enabling of permissions, we
propose to split up the deputy in two subjects. The first one is called calcFacet and
represents the methods of the deputy object that performs the calculation, and writes
the output of the calculation to the client‘s file cFile. The second one is called
adminFacet and represents the methods of the deputy object that read and write
to the deputy’s own file dFile. We therefore assume that no method performs both
tasks.

A binary predicate access models the permission for the subjects to call, directly
or indirectly, the protected resources dFile or cFile. A unary predicate safe
indicates that a subject does not represent a protected resource.

We model two aspects of behavior. The binary behavior predicate may.invoke
models the subject’s intention to invoke another subject. A ternary predicate will refine
this behavior: may.invokeEnable indicates that the invoker intends to put an ac-
cess permission on the stack while calling a subject. The access permission will then
be available to all entities that are called while this permission is on the stack.

The knowledge binary behavior predicate did.invoke indicates that the invoker
succeeded in a direct invocation of another subject, be it a resource or not. The binary
predicate did.call models successful direct or indirect calls. did.invoke refines
did.call.

Figure 8.17 shows the complete SCOLL pattern.

System Rules

These are the system rules we propose, with a short explanation.

8.5. Reference Monitoring 237

(1) safe(X) A:may.invoke(X) => A:did.invoke(X);
Non-resource entities can be invoked by everybody.

(2) A:may.invokeEnable(B,X) => A:may.invoke(B);
Behavior refinement rule.

(3) A:did.invoke(X) => A:did.call(X);
Knowledge refinement rule.

(4) A:did.callEnable(B,X)
=> A:did.call(X) A:did.call(B) B:did.invoke(X);

Assistant rule.
(5) A:did.call(B) B:did.call(C) => A:did.call(C);

Transitivity rule.
(6) access(A,X) A:may.invokeEnable(X,X)

=> A:did.callEnable(X,X) A:did.invoke(X);
Permission enabled direct invocation of resources.

(7) access(A,X) A:may.invokeEnable(B,X) B:may.invoke(X)
=> A:did.callEnable(B,X) A:did.invoke(B);

Permission enabled indirect invocation of resources.
(8) access(A,X) A:did.callEnable(B,X) B:did.call(C)

C:may.invoke(X) => A:did.callEnable(C,X);
Transitivity for permission enabled indirect invocation of resources.

The Configuration

We give the client access permission to cFile. Both facets of the deputy get access
permission to dFile.

In a first version, we search for the maximally permissive behavior of both deputy
facets, given that the files can be relied upon to be completely passive entities that can
only accept data and provide data.

In a second version, we search for similar solutions where cFile is completely
unrestricted.

In a third version, we search for similar solutions where dFile is completely
unrestricted.

Safety and Liveness Requirements

By preventing the untrusted entities client and cFile from directly invoking dFile
directly and by preventing calcFacet from calling dFile directly or indirectly, we
leave but one option for client to call dFile: indirectly via adminFacet. That
is how the deputy intented to use that file.

To make sure that both facets can perform their job, we demand the remaining
liveness possibilities:

calcFacet:did.invoke(cFile) and
adminFacet.did.invoke(dFile).

Most important, we do not want calcFacet to call dFile directly or indirectly,
because that could indicate that the deputy is confused.

The SCOLLAR Results: first version

In the first version, we search for the maximally permissive behavior of both deputy
facets, given that the files can be relied upon to be completely passive entities that can

238 Chapter 8. Patterns of Interaction and Collaboration

declare
permission: safe/1 access/2
behavior: may.invoke/2 may.invokeEnable/3
knowledge: did.invoke/2 did.call/2

system
safe(X) A:may.invoke(X) => A:did.invoke(X);
A:may.invokeEnable(B,X) =>A:may.invoke(B);
A:did.invoke(X) => A:did.call(X);
A:did.callEnable(B,X)
=> A:did.call(X) A:did.call(B) B:did.invoke(X);
A:did.call(B) B:did.call(C) => A:did.call(C);
access(A,X) A:may.invokeEnable(X,X)
=> A:did.callEnable(X,X) A:did.invoke(X);
access(A,X) A:may.invokeEnable(B,X) B:may.invoke(X)
=> A:did.callEnable(B,X) A:did.invoke(B);
access(A,X) A:did.callEnable(B,X) B:did.call(C)
C:may.invoke(X) => A:did.callEnable(C,X);

behavior
UNKNOWN { => may.invokeEnable(B,X);}
MINIMAL {}

subject
client:UNKNOWN
?adminFacet:MINIMAL
?adminFacet:MINIMAL
cFile:MINIMAL dFile:MINIMAL
/* second version: cFile:UNKNOWN ?dFile:MINIMAL */
/* third version: ?cFile:MINIMAL dFile:UNKNOWN */

config
safe(client) safe(adminFacet) safe(calcFacet)
access(client,cFile)
access(cFile,cFile) access(dFile,dFile)
access(adminFacet,dFile) access(calcFacet,dFile)

goal
client:did.call(dFile)
adminFacet:did.invoke(dFile)
calcFacet:did.invoke(cFile)
!client:did.invoke(dFile)
!cFile:did.invoke(dFile)
!did.call(calcFacet,dFile)

Figure 8.17: A SCOLL pattern for non-confused deputies, using a strategy based on
stack walking.

8.5. Reference Monitoring 239

only accept data and provide data.
Four solutions are found. Figure 8.5.4 gives a graphical representation of the

did.invoke relations (left) the did.call relations (right). Notice that only the
client node is indicated in red, and not dFile. That is because we rely on dFile
to be a passive file.

The graphs represent the knowledge reachable in all solutions by dashed arcs and
the knowledge reachable in at least one solution with dotted arcs. The left graph shows
clearly that dFile can only be called via adminFacet.

client

adminFacet

calcFacet

cFile

dFile

client

adminFacet

calcFacet

cFile

dFile

did.invoke graph did.call graph

Table 8.23 lists the sets of behavior restrictions that are necessary and sufficient to
comply with the requirements.

In no circumstances should calcFacet be programmed to invoke client or
adminFacet, even without enabling any permission. Otherwise calcFacet may
indirectly call dFile, which is what we regard to be confusion of the deputy. For the
same reason, calcFacet is not allowed to invoke dFile while enabling its dFile
permission.

The SCOLLAR Results: second and third versions

No solutions were found that allow unrestricted behavior for either cFile or dFile.
Remember that the capability based approach did find a solution for that situation.
However, in SCOLL, the absence of a safety proof is not a proof for the absence of
safety. More refined safe approximations may exist that allow us to find a solution.
Alternatively, we can still consider using a more expressive approach to stack walking
that allows entities to also disable permissions on the stack.

8.5.5 Limitations of Stack walking Strategies
We have proven that a particular stack walking strategy can satisfy our specific safety
and liveness requirements. Many other strategies are possible. Some of them may
release the restrictions we encountered.

However, we should keep in mind that the safety requirements we expressed only
intended to prevent the calculating facet of the deputy to use directly or indirectly the
file that was only meant for the deputy’s own administrative purpose. If we cannot rely

240 Chapter 8. Patterns of Interaction and Collaboration

Table 8.23: The results for the stack walking example

Solutions
calcFacet:may.invoke(client) 0 0 0 0
calcFacet:may.invoke(dFile) 1 1 0 0
calcFacet:may.invoke(adminFacet) 0 0 0 0
calcFacet:may.invokeEnable(calcFacet,dFile) 0 0 1 1
calcFacet:may.invokeEnable(client,cFile) 0 0 0 0
calcFacet:may.invokeEnable(client,calcFacet) 0 0 0 0
calcFacet:may.invokeEnable(client,client) 0 0 0 0
calcFacet:may.invokeEnable(client,dFile) 0 0 0 0
calcFacet:may.invokeEnable(client,adminFacet) 0 0 0 0
calcFacet:may.invokeEnable(dFile,cFile) 1 1 0 0
calcFacet:may.invokeEnable(dFile,calcFacet) 1 1 0 0
calcFacet:may.invokeEnable(dFile,client) 1 1 0 0
calcFacet:may.invokeEnable(dFile,dFile) 0 0 0 0
calcFacet:may.invokeEnable(dFile,adminFacet) 1 1 0 0
calcFacet:may.invokeEnable(adminFacet,cFile) 0 0 0 0
calcFacet:may.invokeEnable(adminFacet,calcFacet) 0 0 0 0
calcFacet:may.invokeEnable(adminFacet,client) 0 0 0 0
calcFacet:may.invokeEnable(adminFacet,dFile) 0 0 0 0
calcFacet:may.invokeEnable(adminFacet,adminFacet) 0 0 0 0
adminFacet:may.invoke(calcFacet) 0 1 1 1
adminFacet:may.invoke(client) 0 1 0 1
adminFacet:may.invokeEnable(calcFacet,cFile) 0 1 1 1
adminFacet:may.invokeEnable(calcFacet,calcFacet) 0 1 1 1
adminFacet:may.invokeEnable(calcFacet,client) 0 1 1 1
adminFacet:may.invokeEnable(calcFacet,dFile) 0 0 1 1
adminFacet:may.invokeEnable(calcFacet,adminFacet) 0 1 1 1
adminFacet:may.invokeEnable(client,cFile) 0 1 0 1
adminFacet:may.invokeEnable(client,calcFacet) 0 1 0 1
adminFacet:may.invokeEnable(client,client) 0 1 0 1
adminFacet:may.invokeEnable(client,dFile) 0 0 0 0
adminFacet:may.invokeEnable(client,adminFacet) 0 1 0 1
adminFacet:may.invokeEnable(adminFacet,dFile) 1 0 1 0

8.5. Reference Monitoring 241

on the passivity of dFile and cFile, there are other ways in which dFile can be
influenced, possibilities that may not have been considered here.

As we mentioned earlier, it is crucial that we take all forms of authority propaga-
tion into account, when performing an analysis of eventual authority. Stack walking
strategies unaided by such an analysis can only consider the propagation of influence
between entities that are on the call stack at the same time. If alice can get a certain
authority by calling bob, and consequently convey that authority to carol by call-
ing carol, bob will effectively have used alice to propagate authority to carol,
without bob and carol ever having called each other.

Part III

Related and Future Work

243

Chapter 9

Adding Authority Flow
Constraints

We have shown in the previous chapters how we can calculate the minimal sets of
restrictions in the configuration of permissions and in the behavior or subjects, that
can guarantee the authority restrictions required by a certain safety policy. But safety
policies can only be expressed directly in SCOLLAR as a set of predicates that should
not be reachable (the safety goals). It would be useful if we could also express more
elaborate policies directly.

In this chapter we provide a way to directly express elaborate policies as constraints
on authority flow graphs, derived from the access graph. We concentrate on one partic-
ular flow graph constraint propagator, recently developed by Luis Quesada: the Dom-
Reachability [QVDC06] constraint propagator, who handles reachability constraints
[QVD05] as well as path constraints.

This chapter is the result of joint work with the inventor of DomReachability: Luis
Quesada, whose work is described in [Que06b].

9.1 Authority Flowing in Graphs
Directed graphs are useful for depicting binary relations directly, but we dismiss them
for representing permissions and authority in general, because these relations can have
arbitrary arity. For instance in SCOLL, the knowledge predicate access is binary,
but the behavior predicate sendTo has three arguments and did.getFromFor(),
a knowledge predicate, has four.

In capability systems, authority propagates from one subject to another. Therefore
the propagation of authority can be presented in a labeled multigraph, in which the
edge-labels represent the kind of authority that is flowing. Alternatively , we could
consider a separate graph for every kind of authority whose propagation we want to
graphically depict. The problem is then: how should we split up authority in “kinds-
of-authority”?

If we make a coarse division into disjunct types of authority, we will get an over-
approximation of the flow.

If we take the origin or the destination of the authority flow into account to decide
the types, we get a very fine-grained division. For instance the “access-propagating-
towards-bob” could be such an authority type. This kind of authority propagation is

245

246 Chapter 9. Adding Authority Flow Constraints

not directly visible in the access graph. It has to be derived with specific rules that
account for the behavior of the subjects that are involved in the propagation. An edge
will be added to the flow graph only when the collaboration between a set of entities
results in the propagation of the authority along the arc.

A graph depicting the “access-flow-originating-from-alice” in a SCOLL pattern,
will have an edge from alice to bob as soon as bob has received a capability from
alice. If he can send that capability to carol, or if carol can get the capability
from bob, there will also be an edge from bob to carol.

The resulting graph is a flow graph: a directed graph with a designated “source”
node, in which the authority flow, represented by the arcs, propagates via the simple
laws of transitive reachability. Many graph constraints can now be considered, which
may be useful to express elaborate safety policies concerning the flow of that particular
type of authority.

We investigate two kinds of such constraints in section 9.2 and show how they
can be useful in this respect. Both constraints are propagated by the aforementioned
DomReachability constraint propagator, that will be introduced in section 9.3. The use
of reachability constraints in authority flow graphs is explained in section 9.4.

Remark

A subject can only use its own knowledge to decide its behavior and it will not be
able, in general, to deduce the origin or the destination of its own access and infor-
mation from that knowledge. Deriving the edges in an authority flow graph from the
behavior of a set of subjects will usually over-approximate the actual causality of the
propagation. If bob has received access-to-X from alice (X can be either data or a
subject here) and he also sends this access-to-X to carol, that does not necessarily
mean that bob is responsible for passing access-to-X from alice to carol. bob
may have given access-to-X to carol regardless of the precondition: having received
access-to-X from carol.

Whereas the use of flow graphs to depict authority flow can allow us to express
elaborate safety policies directly as graph constraints on a flow-graph, the practical
applicability of this approach may be limited due to:

• The approximation in the authority-propagating behavior of the subjects

• The approximation of authority propagation by plain transitivity in the derived
graph

The more specific the authority expressed in the flow graph, the more precise we
can expect these approximations to be.

9.2 Flow Graph Constraints

9.2.1 Definitions
Directed Graph

A directed graph or digraph G is a couple 〈V,E〉 where:

• V is a set of nodes (also called vertices).
V is also denoted as: Nodes(G)

9.2. Flow Graph Constraints 247

• E is a set of couples 〈a, b〉 called arcs (or directed edges), where a and b are
nodes in V . An arc 〈a, b〉 is directed from a to b.
E is also denoted as: Edges(G)

Subgraph of a Directed Graph

Let G = 〈V,E〉 and G′ = 〈V ′, E′〉 be directed graphs.
G′ is a subgraph of G, denoted G′ ⊆ G

⇔ V ′ ⊆ V ∧ E′ ⊆ E

Finite Loopfree Paths in a Directed Graph

Let G = 〈V,E〉 be a directed graph, Let a, b ∈ V
The set of finite loopfree paths in G from a to b, denoted Paths(G, a, b), is defined as
the set of subgraphs P of G such that:

P ∈ Paths(G, a, b) ⇔
{

Nodes(P) = {k1, . . . , kn} : k1 = a ∧ kn = b
Edges(P) = {〈kt, kt+1〉 | 1 ≤ t < n} (9.1)

Note that for every node a in a graph, there is at least one path from a to a: the subgraph
〈{a},Φ〉.

Flow Graph

A Flow graph F is a couple 〈G, s〉 where:

• G = 〈V,E〉 is a directed graph

• s ∈ V is a designated node called F ’s source.

Dominator Nodes

Given a flow graph F = 〈G, s〉, a node a ∈ Nodes(G) is a dominator of another node
b ∈ Nodes(G) if all paths from s to b in G contain the node a. (Definition from:
[LT79, SGL97]).

Formally : Let F = 〈G, s〉 be a flow graph and a, b ∈ Nodes(G).

a ∈ Dominators(F, b) ⇔ a 6= b ∧ ∀P ∈ Paths(G, s, b) : a ∈ Nodes(P) (9.2)

A node b is dominated by a node a in the flow graph F if a ∈ Dominators(F, b).
A dominated node is a node that is dominated by at least one node.
Note that the nodes unreachable from s are dominated by all the other nodes.
Let us consider some other interesting properties on dominators:

Theorem 2. A reachable node cannot dominate any of its dominators
If node a dominates node b and b is reachable, then b cannot dominate a.

Proof. From the definitions of Paths and Dominators:
1) b is reachable

⇒ ∃P ∈ Paths(G, s, b) :

 Nodes(P) = {s = k1, . . . , kn = b}
Edges(P) = {〈kt, kt+1〉〉 | 1 ≤ t < n}
∀i < n : ki 6= b

2) a ∈ Dominators(〈G, s〉, b)

248 Chapter 9. Adding Authority Flow Constraints

⇒ a 6= b ∧ ∀P ∈ Paths(G, s, b) : a ∈ Nodes(P)

⇒ ∀P ∈ Paths(G, s, b) :

 Nodes(P) = {s = k1, . . . , kn = b}
Edges(P) = {〈kt, kt+1〉〉 | 1 ≤ t < n}
∃ki = a : 1 < i < n

From 1) and 2) :

∃P ∈ Paths(G, s, b) :

 Nodes(P) = {s = k1, . . . , kn = b}
Edges(P) = {〈kt, kt+1〉〉 | 1 ≤ t < n}
∃ki = a : 1 < i < n ∧ ∀i < n : ki 6= b

⇒ b /∈ Dominators(〈G, s〉, a)

Theorem 3. Of any two dominators of a reachable node c, in any loopfree path from
the source to c, the first one in the path dominates the other one.

Proof. Suppose that a 6= b, both dominate c and c is reachable. Then clearly, a and b
are also reachable and there exists a path from the source to c that contains both a and
b exactly once. Suppose a comes before b in any such path. Then that path contains a
sub-path from b to c that does not include a.

If a would not dominate b then, since b is reachable, there would be a path from
the source to b that does not include a, and one from b to c that would not include a
either and we could use these to construct a finite loopfree path from the source to c
that would not contain a, which is impossible since a is a dominator of c.

Thus a dominates b.

Corollary 3. The domination relation between the dominators of a reachable node is
a complete strict order.

Proof. A complete strict order is:

anti-reflexive : From the definition of Domination follows that no node dominates
itself.

anti-symmetric : This follows directly from Theorem 2 and from the fact that all
dominators of a reachable node are reachable.

transitive : Suppose a, b, and c, are dominators of a reachable node x and a domi-
nates b and b dominates c. Theorem 3 says that the order of the dominators a, b,
and c in any finite loopfree path from the source to x, decides which one domi-
nates the other one. Since a dominates b, b will not dominate a (anti-symmetric)
and thus a will come before b in that path. For the same reason, b will come
before c in that path. This means that a will come before c in that path and from
theorem 3 follows that a dominates c.

complete : Suppose a and b are dominators of a reachable node x. Then there is at
least one path from the source to x and, like all other such paths, it contains both
a and b. From theorem 3 follows that either a dominates b or b dominates a.

9.2. Flow Graph Constraints 249

Immediate Dominator Nodes

Let F = 〈G, s〉 be a flow graph and let G be finite.
From corollary 3 follows that all reachable dominated nodes in F have a unique imme-
diate dominator, which is defined as :

a = ImDominator(F, b) ⇔ b is reachable in F
a ∈ Dominators(F, bj)
¬∃x ∈ Nodes(G) : a ∈ Dominators(F, x) ∧ x ∈ Dominators(F, b)

(9.3)
This allows us to represent the whole dominance relation as a tree, where the parent of
a node is its immediate dominator. From now on we will consider only finite graphs.

Dominator Tree

Let F = 〈G, s〉 be a flow graph.
The dominator tree of F , denoted DomTree(F) is the digraph 〈V,E〉 such that:{

V = Nodes(G)
E = {〈a, b〉 ∈ Edges(G) | a = ImDominator(F, b)} (9.4)

Extended Graph

The extended graph of a directed graph G, denoted Ext(G) is obtained by replacing
the edges by new nodes and connecting the new nodes accordingly as follows:

Ext(〈V,E〉) = 〈V ′, E′〉 :
{

V ′ = V ∪ E
E′ = {〈a, e〉, 〈e, b〉 ∈ V ′ × V ′ | e = 〈a, b〉 ∈ E}

(9.5)
By extension of the definition, the extended graph of a flow graph F = 〈G, s〉 is

defined as:
Ext(〈G, s〉) = 〈Ext(G), s〉 (9.6)

Extended Dominator Tree

We call the dominator tree of a flow graph’s extended graph its extended dominator
tree:

ExtDomTree(F) = DomTree(Ext(F)) (9.7)

Figures 9.1, 9.2 and 9.3 show an example of a flow graph, its extended graph, and
its extended dominator tree, respectively. The extended dominator tree has two types
of nodes: nodes corresponding to nodes in the original graph (node dominators) and
nodes corresponding to edges in the original graph (edge dominators). The latter nodes
are drawn in squares.

250 Chapter 9. Adding Authority Flow Constraints

Figure 9.1: Flow graph Figure 9.2: Extended flow graph

Figure 9.3: Extended dominator tree

9.3. The DomReachability Constraint 251

9.3 The DomReachability Constraint
The DomReachability constraint is a constraint on three graphs:

DomReachability(F,D, T) (9.8)

where

• F = 〈G, s〉 is a flow graph

• D = ExtDomTree(F)

• T is the transitive, reflexive closure of G, denoted TC(G) and defined as{
Nodes(T)=Nodes(G)
Edges(T)={〈a, b〉 | Paths(G, a, b) 6= Φ} (9.9)

From the definition of Paths in (9.1): ∀a ∈ Nodes(G) : 〈a, a〉 ∈ Edges(T).

9.4 Constraints on the Reachability of Authority

9.4.1 The Bounded Transitive Closure Problem (BTC)
Given the directed graphs gmin, gmax, tcgmin and tcgmax, find a directed graph g such
that:

gmin ⊆ g ⊆ gmax

and
tcgmin ⊆ TC(g) ⊆ tcgmax

(9.10)

The BTC instance can be directly modeled in terms of DomReachability: gmin,
gmax, tcgmin and tcgmax are the bounds of fg and tcg.

Remark :

BTC problems are NP-complete. That was recently shown in [Que06a], by reducing
the The Disjoint Paths Problem [GJ79] to BTC.

9.4.2 Safety and Liveness in terms of BTC
Basically, SCOLLAR deals with two concerns:

1. some authority should not be reachable for safety (safety properties)

2. some other authority should be reachable for functionality (liveness possibilities)

When the propagation of authority is safely approximated by the flow in a graph,
both concerns can be expressed in the Bounded Transitive Closure Problem on this
graph:

• the set of liveness possibilities will be tcgmin,

• tcgmax will be the complement of the set of safety properties, and

• gmin and gmax will just be suitable bounds for the safe configuration of permis-
sions we are looking for, decided by the initial configuration.

The next sections show examples of situations that allow us to put the reachability
propagator to work, for simple problems expressed in SCOLL.

252 Chapter 9. Adding Authority Flow Constraints

9.4.3 Confinement by Interposition
Suppose we have a set of previously unconnected, uncontrollable subjects and we want
to find out how we can connect them, using controlled subjects, to allow them to per-
form their collaborative tasks, but also prevent them from breaking a given security
policy. The tools we have to solve this problem are:

• a set of controllable subjects to be strategically inter-positioned between the un-
controlled subjects.

• a set of permissions to be granted to the controlled subjects.

The assignment is: find a configuration (graph) with a minimal number of con-
trollable nodes (not exceeding a fixed practical upper limit), that guarantees the re-
quirements for liveness (the uncontrolled subjects get enough authority) as well as the
requirements for safety (the uncontrolled subjects do not get too much authority).

Practical Example

We take a well known example, expressing a simple Multi-Level Security Problem
(MLS) [BL74]. Two external entities Bond and Q, with respective clearances Top Se-
cret and Confidential, have to be given access to two external storage devices, one for
Top Secret content and one for Confidential content.

We have to construct the content of a black box in (e.g. Figure 9.4), with a min-
imal number of subjects. Since the uncontrollable subjects cannot be restricted, their
connection to the box is bi-directional. Even the devices are not trusted to be passive
containers. They are unknown subjects and could be of any type.

Figure 9.4: The ∗-property black box

The security relations we want to enforce between these four entities is: no top
secret information leaks (down) to the confidential level. Therefore we will enforce the
∗-property (star-property) that states: agents should be able write to all levels above
(and including) their own level of confidentiality and read from all levels below (and
including) their own level of confidentiality, but no agent should be able to write strictly
below his confidentiality level, or read strictly above his confidentiality level. This is
a policy that specifies both liveness requirements and safety requirements, so we will
express it as suggested in section 9.4.2.

9.4. Constraints on the Reachability of Authority 253

Expressing the problem in terms of DomReachability

The BTC for the instance of the problem presented above is:

gmin = ∅
gmax = {〈x, y〉|x, y ∈ {b, q, t, c} ∪ {o1, o2, ..., omax}}

tcgmin = {〈b, t〉, 〈t, b〉, 〈q, c〉, 〈c, q〉, 〈c, b〉, 〈q, t〉}
tcgmax = gmax − {〈b, q〉〈b, c〉〈t, q〉〈t, c〉}

(9.11)

In the problem b stands for Bond, q for Q, t for the top-secret device, and c for the
confidential device. The controlled nodes are o1, o2,...,omax.

Apart from the BTC constraints, we have to express the fact that b, q, t, and c are
uncontrolled, by making sure that all their connections are bi-directional. We therefore
added the necessary implication constraints to the problem:

∀0 ≤ i ≤ max, x ∈ {b, q, t, c} : 〈x, oi〉 ∈ g ⇔ 〈oi, x〉 ∈ g (9.12)

To minimize the number of controlled subjects, we can start with zero controlled
nodes and iteratively add one more, until we find a solution.

A solution for the authority flow with a minimal number of internal nodes is pre-
sented in Figure 9.5.

Figure 9.5: A solution with the minimal number of controlled subjects

This solution is still in the form of an authority-flow graph and has to be trans-
formed to a SCOLL configuration. Let us do that for capability systems, keeping in
mind that the connections to/from the four unrestricted subjects are outside the system
and they cannot be controlled: they are assumed to be initially separated and our set-up
is only responsible for not jeopardizing the original confinement.

This process is straight forward, but not unique. We could for instance map all arcs,
including the one between O1 and O2 to both-way access permissions in the SCOLL
configuration. O1’s behavior must be restricted so that it does not send information
to O2. O1 can be given initial knowledge about who is Top Secret and his behavior
should simply accept incoming data as responder only and forward that data as an
invoker to Top Secret. In that case, O2’s behavior must be restricted so that it does not
get information from O1.

254 Chapter 9. Adding Authority Flow Constraints

In fact, now the structure of the graph has been generated by DomReachability,
SCOLLAR can also be used to calculate the necessary behavior restrictions for O1 and
O2.

9.4.4 Confinement by Restricted Behavior
In the previous section we relied on the internal subjects to behave exactly as allowed.
This is typical for capability systems [DH65]: such relied-upon subjects are called ca-
pabilities. Notice however, that the behavior restrictions were static and binary and
could therefore be expressed directly in a graph. Such configurations can, in princi-
ple, also be protected with a reference monitor that checks the read/write permissions
between the internal subjects, before they are exerted.

Of course, behavior can be restricted in much smarter ways than simply emulat-
ing the inhibition of certain permissions. We can try to program capabilities to use
their permissions (access) in a way that makes the desired authority reachable while
preventing all illegal authority. Taking such smart behavior into account allows for a
more accurate analysis of the reachable authority in a system. An account of the dif-
ferent levels of detail in which the boundaries of authority can be calculated is given in
[Mil06b].

Suppose we want to express the behavior of a subject that only passes information
if:

• other subjects wrote that information to it (it did not read the information itself
from other subjects), and

• it writes that information itself to other subjects (it does not reveal that informa-
tion to its own readers)

Figure 9.6: Data Forwarder (dataflow diode)

Such a subject acts as a forward diode for data flow, depicted in figure 9.6. The full
arcs denote the access rights and the dashed arcs represent the corresponding flow of
data. The data-flow is only transitive in one direction: from A to B, as indicated by the
dotted arcs. The behavior of the diode in the middle prevents data to pass in the three
other directions.

9.4. Constraints on the Reachability of Authority 255

Expressing this behavior in SCOLL is straight forward, but let us now try to express
it as a flow graph. Instead of being a simple node, the subject’s behavior will now be
presented by a subgraph of the complete flow graph. This subgraph has four nodes:
two in−ports and two out−ports, one of each kind for reading and the other one for
writing. All external arcs will be connected to one of the four ports: the incoming flow
to the in-ports, the outgoing flow to the out-ports, the flow via read permissions to the
read-ports, and the flow via write permissions to the write-ports. These restrictions can
directly be expressed in BTC, by removing the illegal external connections from gmax.

Table 9.1: Subgraphs for behavior-based internal dataflow

behavior graph simplified graph behavior

unrestricted behavior

hides its writers data from its
readers

data forwarder of figure 9.6

non-transparent subject

Table 9.1 shows some behavior subgraphs with four internal ports (not to be con-
fused with the graph in figure 9.6). The internal flow (arcs) always goes from an
in-ports (left) to an out-ports (right). These subgraphs are to replace the monolithic
subject nodes in the data-flow graph. The arcs here correspond to the dotted arcs (flow-
through) in the example of figure 9.6. Depending on which of the four possible arcs
are present, the behavior-graph can be simplified (second column of table 9.1).

This suggest the utility of graph-based behavior definitions in patterns of capability
based collaboration, to improve the accuracy of the approximation of authority analysis
in flow graphs. Compared to SCOLL’s expressive power, the behavior that is expressed
with these 4-node subgraphs is very simple. Adding extra expressive power will require
a fast growing number of nodes in the subgraph. Still, the example shows that the
approach is useful beyond modeling simple all-or-nothing use of permissions.

Now that the behavior is part of the flow graph, the solution to a safety problem
can suggest restrictions to the behavior of trusted subjects as well as restrictions to the
initial configuration of permissions, just like in SCOLLAR.

256 Chapter 9. Adding Authority Flow Constraints

9.4.5 Implication graphs: The Conditional BTC Problem

In the previous sections we had to use additional constraints to express the security
problems. For instance, we used extra constraints for all four uncontrolled subjects in
section 9.4.3, to express that they should take only bidirectional connections. The BTC
problem can easily be extended to incorporate such implication constraints.

A condition like: “if an edge 〈A,B〉 is in the graph, then so should 〈B,A〉” can be
seen as edge between edges: 〈A,B〉 → 〈B,A〉, in a graph whose nodes are edges in
the original graph and whose edges represent implications.

But the approach doesn’t need to be limited to conditions between edges in the same
graph: we could as well express inter-graph conditions as edges. Such a condition can
be presented as an edge from an edge-in-one-graph to an edge-in-another-graph. The
edges we connect by implication can be chosen from any graph in the BTC problem.
To further improve the expressive power, we also allow edges to be chosen from the
complement of such a graph. We denote the complement of graph g = 〈V,E〉 as
g′ = 〈V, (V × V) \ E〉.

Definition

Given the directed graphs gmin, gmax, tcgmin and tcgmax, and given a graph condg
that is a subgraph of 〈V,E〉 such that :

V = Nodes(gmax)] Nodes(tcgmax)] Nodes((gmax)′)] Nodes((tcgmax)′),
and

E = V × V = {〈eG1
1 , eG2

2 〉 | G1, G2 ∈ {gmax, tcgmax, (gmax)′, (tcgmax)′)}
∧e1 ∈ Edges(G1) ∧ e2 ∈ Edges(G2)}

find a directed graph g such that:

gmin ⊆ g ⊆ gmax

and
tcgmin ⊆ TC(g) ⊆ tcgmax

and
∀〈eG1

1 , eG2
2 〉 ∈ condg : e1 ∈ G1 ⇒ e2 ∈ G2

(9.13)

By constructing implication-edges with edges from the complement of a graph, we
can express negative requirements too.

The security problems in sections 9.4.3 and 9.4.4 are direct applications of CondBTC.
The implications involving edges of the solution graph and its transitive closure can be
directly represented in terms of condg.

Expressing the problem in terms of CondBTC

The CondBTC for the ∗-property exercise of section 9.4.3 is:

gmin = ∅
gmax = {〈x, y〉|x, y ∈ {b, q, t, c} ∪ {o1, o2, ..., omax}}

tcgmin = {〈b, t〉, 〈t, b〉, 〈q, c〉, 〈c, q〉, 〈c, b〉, 〈q, t〉}
tcgmax = gmax − {〈b, q〉〈b, c〉〈t, q〉〈t, c〉}
condg = {〈x, y〉, 〈y, x〉 | x ∈ {b, q, t, c} ∧ y ∈ {o1, . . . , omax}}

(9.14)

9.5. Future Work 257

9.5 Future Work

9.5.1 Implication hypergraphs: The Cardinal BTC Problem
We observe that the expressive power of CondBTC can be further enhanced if we
use the condg graphs to represent, instead of implications between edges in g] g′]
TC(g)] (TC(g))′, implications between mixed sets of such edges. An edge 〈A,B〉
in condg can then represent a composite condition: if all edges in the set A are present,
then so should at least one edge in the set B. We call this the Cardinal BTC Prob-
lem(CardBTC).

The extended definition of condg allows us to simplify the definition of the prob-
lem. The BTC graphs gmin, gmax, tcgmin and tcgmax themselves can now be defined
with condg, transitive closure, and graph complement as follows:

∀e ∈ gmin : 〈∅, {eg}〉 ∈ condg

∀e 6∈ gmax : 〈∅, {e(g)′}〉 ∈ condg
∀e ∈ tcgmin : 〈∅, {eTC(g)}〉 ∈ condg

∀e 6∈ tcgmax : 〈∅, {e(TC(g))′}〉 ∈ condg

(9.15)

The expressive power of CardBTC can be extended even further, if we also label
the edges with constraints on the cardinality of the target set.

Implementation Possibilities

The cardinality constraints involved in CardBTC can be imposed by standard approaches
based on cardinality propagators [VD91].

Observe that, when we associate each basic graph constraint with a literal, a Boolean
Satisfiability Problem appears. This abstraction could allow us to take advantage of
BDD propagators to narrow down the literals composing a given disjunction [HLS05].
Hybrid approaches, like the one suggested in [HS06], can also be considered, to exploit
the advantages of SAT solvers.

Applying CardBTC for practical Security Problems

CardBTC allows us to express complex conditions on the propagation of authority in
several ways we did not yet explore:

• It can be used to express more complex ways of authority propagation than tran-
sitive closure.

• It can be used to represent fine-grained conditional behavior of trusted subjects,
without the need to represent every subject as a complex subgraph.

9.5.2 Towards a Synergy of SCOLLAR and DomReachability
We expect the applications of DomReachability for security to be most useful in col-
laboration with our existing SCOLLAR tool. SCOLLAR is most suitable to express a
system’s rules that govern the propagation of permissions and authority, and a subject’s
behavior. System rules can express realistic models for propagation, that can take the
restrictions in the behavior of the trusted subjects into account. Subject behavior can
be expressed in a way that depends on the information that a subject has from initial

258 Chapter 9. Adding Authority Flow Constraints

conditions and has acquired during the collaboration with other subjects. Its expres-
sive power makes SCOLLAR a tool that can (also) be used to study the propagation of
authority in capability systems and patterns of collaborating entities.

The restriction to monotonic approximations (that are safe but may possibly be too
crude) prevents us to directly express the revocation of authority. This is relevant for
capability systems too because, even if access permissions cannot be revoked, it is very
well possible (and easy) for a subject to revoke the authority it used to provide to its
clients, for instance by refusing to collaborate any further and no longer pass on any
data or capabilities.

This is where the dominator part of DomReachability can be of direct use. Instead
of simply stating that some effect (authority) should be prevented, we could instead
require that all authority of a certain kind should only ever be available via a trusted
subject that is able to revoke the authority by (further) restricting its collaborative beha-
vior. In the authority-flow graph, to be derived from the access-graph, a trusted subject
alice can revoke all bob’s authority over a third subject carol, if alice domi-
nates bob in the authority-flow graph that originates with carol, or if alice has the
authority to instruct another dominator (e.g. caretaker in section 8.2) to do so .

Chapter 10

Designing a Capability Secure
Language

10.1 Introduction

10.1.1 Motivation
Most of the work presented in this thesis was motivated by an indirect goal: the trans-
formation of the multi-paradigm language Oz into a capability secure language, that
enables and facilitates the practice of secure programming. That project is called Oz-E,
in honor of the capability secure programming language E [MSC+01], who embraces a
pure object-oriented paradigm, but also provides support for declarative and functional
programming.

10.1.2 Revisited Concepts
To define secure programming, we will quickly revisit some important concepts that
were first explained in section 1.3.

Definition 32 (Permission). An action an entity (subject) is allowed to perform. No
subject can perform an action without having the permission. The subject having the
permission may or may not be able to perform the action. If it is able to perform the
action, it may or may not actually do so. Performing the action may or may not have an
effect. If it has, the nature of the effect may not necessarily be deterministically defined
by the action alone.

Permissions are usually binary relations between subjects: they allow the holder
subject to perform a certain action on the target subject.

Definition 33 (Capability). An unforgeable reference that inextricably combines a per-
mission with the designation of the target subject and with the ability to use the per-
mission. A capability can simply be a reference to a target subject, if such a reference
cannot be forged. In that case, the permission it carries is: to use the designated target
(e.g. invoke it, or use it as an argument in other permitted invocations).

Definition 34 (Authority). An effect a subject is able to invoke. The subject having a
certain authority may or may not actually use it. Authority to invoke an effect implies
the permission to perform an action that will (eventually) cause that effect. The effect

259

260 Chapter 10. Designing a Capability Secure Language

of using a permission is not always determined by the permission and its holder alone.
Permissions represent no more than a crude approximation of a subject’s authority, as
it can be influenced by the behavior of the holder and the target subject.

Definition 35 (Secure Programming). Programming for interaction with components
of unknown or uncertain reliability, while guaranteeing that a predefined level of vul-
nerability is not exceeded.

Secure programming has to guarantee two conditions:

1. All relied-upon components are programmed reliably so that they

• do not actively abuse their authority to inflict unacceptable damage and

• cannot be lured into doing so by their collaborators (see section 8.1: con-
fused deputies).

2. No authority to inflict unacceptable damage can become available to any com-
ponent unless it is relied-upon not to inflict such damage (see section 8.3: con-
finement).

Given a program and a non-trivial set of safety requirements, the programmer can
model his/her program in SCOLL (Chapter 6) and analyze its vulnerabilities in SCOL-
LAR (Chapter 7) to acquire the necessary confidence that the program meets its safety
requirements. If it is not, SCOLLAR can compute alternative ways to design the pro-
gram such that safety is guaranteed (Section 7.2.2). If SCOLLAR cannot find such
alternatives, this means that:

• the SCOLL model should be refined to better approximate the program’s autho-
rity propagation semantics, or

• the program is inherently unsafe: its functionality requirements violate its safety
requirements, regardless of its implementation.

In general, there is no way to differentiate between both causes of failure. However,
insight into the mechanisms that cause violation of safety will be gained from the ana-
lysis and can provide useful hints towards alternative designs. Patterns of collaboration
with untrusted entities, such as provided in chapter 8, represent a crystallized form of
experience in secure programming and can provide ready-made solutions to common
problems.

The programming language has a crucial influence on the maximum propagation
of authority among interacting entities, in programs that are expressed in the language.
This influence is modelled in the system rules of SCOLL (Sections 5.3.3 and 6.2.2).

Definition 36 (Behavior). Behavior is a safe (over) approximation of an entity’s own
use of permissions and of its influence on the authority that is provided by permissions
of which the subject is the target. Behavior is the subject’s own positive influence on
authority, we could not with certainty rule out from the partial knowledge we have
about it.

Definition 37 (Collaboration). Collaboration is the form of interaction between two
(or more) entities, allowed by a permission, whereby the behavior of the target subject
can completely annihilate the effect of the interaction (except for the fact that the inter-
action itself took place). For a formal definition in terms of SCOLL’s system rules, see
definition 29 in section 6.8.7.

10.2. Basic Principles 261

The design principles for Oz-E will be partly dictated by the requirement for col-
laboration: subjects should have the power to restrict authority and its propagation,
whether as a holder or as a target of a permission.

10.1.3 Approach
We gained insight in the most important principles for secure language design from
two main sources:

• Earlier experiences with the capability-secure language E [MSC+01] and the
W7-kernel for Scheme 48 [Ree96].

• Experience with SCOLLAR (see chapter 8).

Part of the content in this chapter was published earlier as [SV05]. We do not claim
that the set of guidelines we propose here is complete, but we are confident that they
represent a useful and valid contribution to secure language design.

While the Oz language was designed to satisfy strong properties, such as:

• full compositionality,

• lexical scoping,

• simple formal semantics, and

• network transparent distribution.

Security, in the sense of protection against malicious agents, was not a design goal.
Following Mark Miller’s suggestion in [Mil03], we do not try to add security to Oz,

but instead to remove its insecurity. Therefor Oz-E will start off as a small subset of
Oz that is known to be secure. It will gradually grow in functionality and expressive
power, while keeping the language secure.

The ultimate goal is to reach a language that is at least as expressive as Oz, but is
secure both as a language and in terms of its implementation. Most important: it should
be straightforward to write programs in Oz-E that are secure against many realistic
threat models.

10.2 Basic Principles
We distinguish between three kinds of principles:

• Mandatory Principles: to make secure programming possible

• Pragmatic Principles: to make secure programming feasible

• Additional Principles: to support analysis of authority propagation

All principles serve a common goal: to support the development of programs that use
untrusted modules and entities to provide (part of) their functionality, while minimizing
their vulnerability to incorrectness and malicious intents of these entities.

To avoid excess authority, secure programming has to apply the Principle of Least
Authority (POLA) (Section 1.3.4) with scrutiny. That means that the language should
support POLA in two ways:

262 Chapter 10. Designing a Capability Secure Language

• Make it easy for the programmer to fine-grain and minimize the authority that is
directly provided to entities, both relied-upon and untrusted.

• Make it hard or even impossible for the programmer to build entities whose
authority can be abused by adversaries or incorrectly programmed allies.

The confused deputy attack (Sections 4.6 and 8.1) is an important form of abuse,
the language should help the programmer to prevent. In short, a deputy is an entity that
is designed to get authority from its clients and to use that authority to perform a task
on that client’s behalf. The deputy is confused when he uses his own authority instead
of the client’s. The deputy can prevent confusion if he requires his clients to delegate
authority in the form of a capability.

We therefore limit our attention to languages that support capabilities.

10.2.1 Mandatory Principles
An simple and effective way to build a capability based language is: to make every
reference (pointer) unforgeable in the language. That way, every reference becomes a
capability, designating the referenced entity and carrying the full permission to “use”
or “access” the entity.

When all authority is accessible only through such unforgeable references, no other
permissions are necessary to build a capability secure language. Instead of building a
capability that only allows partial use of its designation, we can make a full-permission
capability that designates an proxy for the original entity and construct the proxy so
that we can rely on its restricted behavior to use only the intended part of its authority.

For instance, instead of creating a read-only capability designating a file, create a
full-access capability to a readstream on that file.

Three principles express what is necessary and strictly sufficient to enable capabi-
lity based secure programming:

1. Give entities no authority that is not rooted in capabilities

2. Upon creating or loading an entity, provide it with no capabilities.

3. Limit the possibility for entities to get extra authority from combining two capa-
bilities.

No Ambient Authority

This is the most strict requirement for a language that is to allow secure programming.
It combines the first two principles mentioned above.

Ambient authority is authority that is available to an entity “from the environment”.
If entities can get authority this way, the programmer can only restrict the use of that
authority in the part of the program that he writes himself.

To enable the programmed entities to have complete control over the propagation
of authority, the language has to cut off every other way of getting authority.

Therefore, all entities should come to live with no default authority and capabilities
should only be acquired in the following ways:

1. By endowment and parenthood (as defined in section 4.3.3). These are forms of
authority propagation between a creating entity (parent) and the entity it created
(child). By parenthood, the parent gets the capability to use the child. The parent

10.2. Basic Principles 263

is allowed to endow the child with a subset of his capabilities. These are the only
two forms of authority propagation that do not require collaboration.

2. By collaboration. Using a capability, an entity can initiate a collaboration with
the entity designated by the capability. (See definition 37).

The language thus has to make sure that no authority can be acquired in any other
way, for instance via globally or dynamically scoped variables or via memory probing
and forging.

Concrete, this means :

• The language should be purely lexically scoped.

• The language and the implementation should be completely memory safe.

• The loader should provide no authority to entities upon loading them into mem-
ory.

Avoid Authority Amplification

This principle is a variant on the first one.
In some situations, the availability of two capabilities can result in more authority

than the simple sum of both authorities. This phenomenon is called authority amplifi-
cation. It has useful applications for authentication purposes, which will be described
in section 10.2.2.

However, authority amplification should not be used as a means to distribute autho-
rity, as will be shown in the following example.

Example:

Consider a file system in which the file references are capabilities that carry
minimal permissions. If you have such a capability, you can use it to test if the
designated file exists, but not create the file, or read from it or write to it. To
read or write the file, you also need access to the module “FileIO”, which is
only available to some trusted entities. That module provides read and write
operations in the form of unforgeable procedure references that take an input
argument (a file reference) and then read or write from it on its client’s behalf.

On its own, access to such an operation does not provide any authority, but com-
bined with a simple file reference, it amplifies the authority of that reference. The
file reference, even if unforgeable, is used here as a designation, separated from
its actual authority. Therefore it makes the operations vulnerable to confused
deputy attacks.

Authority amplification causes extra “ambient authority” to become available to an
entity and can confuse deputies because the extra authority is neither provided by the
client nor by the deputy.

Figure 10.1 shows what can happen in general. In the lower plane we see the
client and the deputy: the client passes a capability to the deputy. In the middle plane,
the ovals represent the capabilities held by the client and by the deputy. In the upper
plane, the ovals represent the authority reachable via the client’s capabilities and via
the deputy’s capabilities.

The passed capability designates an entity. Authority amplification will increase
the authority that the deputy has over this entity. This is shown by the small bold

264 Chapter 10. Designing a Capability Secure Language

client’s authority deputy’s own authority

client’s capabilities deputy’s own
capabilities

client’s capabilities delegated to deputy

client deputy

amplified authority: not delegated by client, not owned by deputy!

authority towards an entity designated
by client’s delegated capability !

Figure 10.1: Authority amplification can confuse deputies

oval. In a way, designation and authority have effectively become separated again. The
confused deputy problem arises.

In this respect, it is relevant to consider the differences between types of data ab-
stractions made in [VH04]. Abstract data types (ADT’s) are called unbundled because
they provide operations separately from values, while bundled data types combine the
data with the operations. As shown in the example, unbundled data types will lead
inevitably to confusion of deputies via authority amplification. Oz-E will therefore,
contrary to Oz, opt for bundled data types.

Further on, we will take this reasoning further and plead for object-style data types
to maximally support authority control via collaboration.

10.2.2 Pragmatic Principles

Due to the mandatory principles, all essential control of authority distribution and pro-
pagation becomes available to programmers. They can now, in principle, start building
entities that will perform reliably in collaboration with untrusted ones.

However, it is not enough for a language to enable secure programming. It should
also make secure programming feasible in practice and consequently favour secure
programming as the default. The principles in this section are meant to promote and
facilitate secure programming.

Defensive Consistency

The dominant pattern of secure programming, which the language must make practical,
is that clients may rely on the correctness of servers, but that servers should not rely on

10.2. Basic Principles 265

the correctness of clients.

A server (in general, any “callee”) should always check its preconditions. A client
(any “caller” in general) may rely on the server, if it has the means to authenticate
the server. The usefulness of this pattern has emerged from experience with E and
its predecessors. Miller puts this requirement in a larger context with other forms of
robustness [Mil06b]. In section 4.1.6 we saw that Dennis and Van Horn identified a
very similar concern [DH65].

In traditional correctness arguments, each entity gets to rely on all the other entities
in the program. If any are incorrect, all bets are off. It may be OK to rely on untrusted
entities for the correct functionality of a program, but there is no reason to also rely on
their security. On the other hand, for programmers to actually check all preconditions,
postconditions, and invariants is not a realistic approach. Defensive consistency is when
every entity explicitly checks its input arguments when invoked. This is a realistic and
effective middle way.

A secure programming language must make it practical to write most abstractions
painlessly to this standard. Its libraries should be populated by abstractions that live up
to this standard. The remaining abstractions should explicitly state that they fall short
of this standard.

Figure 10.2: Paths of vulnerability

Figure 10.2 shows an access graph. Dashed nodes are entities not relied upon in any
way. White crescents indicate that all incoming arguments are checked before being
accepted or used. A black crescent indicates that all outgoing arguments are checked
before being transferred. A and B are vulnerable to (rely upon) C and C is vulnerable to
D. Since vulnerability is a transitive relation, A and B are also vulnerable to D. Because
C checks its incoming arguments when invoked, it will protect itself and its clients from
malicious arguments (e.g. provided by X). Paths of vulnerability are easy to follow and
go one way only. Two clients vulnerable to the same server are not for that reason
vulnerable to each other.

To support defensive consistency, Oz-E has to make it easy for the programmer to
check incoming arguments. Guards, authentication primitives, and auditors, presented
in the next sections, can provide such support.

266 Chapter 10. Designing a Capability Secure Language

Guards

E’s guards [Sti00, Mil06b] form a soft typing system [CF91] that provides syntax sup-
port to make dynamic checking as easy as using static types. Guards are first class
citizens and support arbitrary complex dynamic checking without cluttering the code
with the actual tests. They can be user defined, and combined into more complex
guards by logical operators.

Authentication

For an entity to defend its invariants in a mutually distrusting context, it can be impor-
tant to know the origin of collaborating entities. The entity may want to authenticate
a procedure before invoking it, and an argument before applying the procedure to it or
before returning a capability to its invoker. Because capabilities unify designation and
permission, and because the confused deputy problem can be naturally avoided, there
is no need to identify the invoker.

We do not necessary want to know who wrote the code for that entity – since that
knowledge is not very useful in general – but whether we can rely upon the entity that
loaded it and endowed it with initial authority. For example, if we rely upon bank B,
we can authenticate an account-entity A by asking B if A is genuine, in other words
if B recognizes A as one of the accounts B – or maybe an associated branch – created
earlier.

There is a tension between the need for authentication and the requirement that all
interaction should happen via collaboration. Collaborating with A to find its identity
would give A the possibility to lie about it. On the other hand, allowing to break
A’s encapsulation would deny A the possibility to control authority propagation. The
compromise here is to rely on A’s alleged creator B, who, if he really created A, has
had rightful access to A’s identity and internal data, at the time of creation. B does not
have to collaborate with A to find out if it is really one of its creations.

Authentication by Invited Auditors

The above form of authentication is only useful to authenticate entities of which the al-
leged creator is a relied-upon third party. Moreover, this form of authentication cannot
tell us anything further about the actual state of an entity at the time of authentication.

To reliably interact with entities of unknown origin, it must be possible to have
them inspected by a relied-upon third party. Without breaking encapsulation, that can
be done as shown by E’s auditors [YM00, Mil06b].

When an entity is created, a relied-upon third party auditor is invited by the creator,
to inspect the entity’s behavior and lexical scope. Later, when the auditor is asked to
vouch for the relied-upon properties, it will reveal its conclusions, or if necessary re-
inspect the state of the entity before answering yes or no. If inconclusive or uninvited,
it will answer no.

Failing Safely

When an entity cannot guarantee its invariants in a certain condition, it should raise an
exception. The default mechanism should not enclose any capabilities or potentially
sensitive information with the exception that is raised. Part of this concern can be
automated by the guards discussed earlier, who will throw an exception on behalf of
the entity.

10.3. The Layered Structure of Oz-E 267

Preemptive Concurrency and Shared State

Preemptive concurrency enables an activation of an entity at some point in its progress
to destroy the assumptions of another activation of the same entity at another point in
its progress. This phenomenon is called plan interference.

Semaphores and locks give programmers control over the interaction between con-
currently invoked behavior, but their use is error-prone and increases the overall com-
plexity of a program. Good locking becomes a balancing exercise between the danger
of race conditions and deadlocks. Preemptive concurrency with shared state makes de-
fensive programming too hard because considering a single invocation of behavior is
not enough to ensure preconditions and invariants.

For example, consider a simple observer’ pattern [GHJV94]. With message-passing
concurrency as explained in chapter 5 of [VH04] – all entities involved are Active Ob-
jects, subscription is done by providing a Port, and notification via a Port.send opera-
tion – all update notifications of an entity are guaranteed to arrive at the subscribers in
the order of the update.

10.2.3 Additional Principles: Support for the Review Process

When the language is ready to provide all the necessary support for secure program-
ming, one more important design concern remains. The programmers are now in the
position to avoid security flaws while programming, but they also need to be able to
quickly find any remaining vulnerabilities that might have got in.

Oz-E must be designed to make security debugging easy. Its syntax should there-
fore allow programmers to quickly identify big parts in a program that are obviously
safe, and concentrate on the remaining part.

A minimum set of tools to support debugging and analyzing the vulnerabilities is
indispensable. These can range from syntax coloring to debuggers for distributed code
and tools for security analysis.

The latter is the main rationale for the other chapters in this thesis, leading up to
the SCOLLAR tool described in section 7. SCOLLAR is meant primarily to allow
us to examine the usability of patterns of safe collaboration that emerged from expe-
rience (e.g. the Powerbox [SM02] and the Caretaker[MS03, Red74]), and enable the
discovery of new such patterns.

10.3 The Layered Structure of Oz-E
The Oz language has a three-layered design. We briefly introduce these layers here.
For a detailed explanation, see [VH04] (chapter 2 and appendix D).

The lowest layer is a simple language, kernel Oz, that contains all the concepts
of Oz in explicit form. The next layer, full Oz, adds linguistic abstractions to make
the language practical for programmers. A linguistic abstraction is an abstraction with
syntactic support. In general, an abstraction is a way of organizing a data structure or
a control flow such that the user is given a higher-level view and does not have to be
concerned with its implementation. The final layer, Mozart/Oz, adds libraries and their
interfaces to the external environment that depend on the functionality provided by the
operating system.

We realize that in an ideal world, the language and the operating system should be
developed together. Pragmatically, we will provide as much of the operating system

268 Chapter 10. Designing a Capability Secure Language

functionality as possible inside the third layer of OzE. Any remaining functionality –
not fitting the language without a complete rewrite of the operating system – will be
accessible through a general system interface.

The importance of the layered architecture for security is stressed by a flaw in the
current Mozart system that was found by Mark Miller. The module Time, currently
available in the second layer as ambient authority, provides access to the system clock
and should therefore be transferred to layer three, the functionality of which can only
be available via explicitly granted capabilities.

Read access to the system time can be used to create indirect channels for data-
communication that are invulnerable to countermeasures like randomness in thread
execution sequence and adding randomized delays. While such countermeasures can-
not prevent an entity to broadcast data using covert channels, they can make it arbitrary
hard for them to receive their instructions and input via such channels.

Oz-E should keep as much of this layered structure as possible, while staying within
the boundaries of the security requirements. We will start with very simple versions
of these layers and grow them carefully into a full-featured language, maintaining the
security properties throughout the process. The project will start by showing formally
that the initial versions of kernel language and full language are secure. During the
growth process, a formal semantics of the kernel language should be maintained at all
times, to allow verification of these principles.

In the following three subsections, we present each of the three layers and we dis-
cuss some of the issues that need to be resolved for each layer. Again, we do not claim
to be complete in this respect.

10.3.1 Kernel Language
The kernel language should be complete enough so that the programmer never needs
to go below that level, e.g., to a byte code level. Making the kernel language the
lowest level seen by (normal) application developers and library designers, reasoning
and program development and analysis will be simplified. Only the language designers
themselves will go below that level. The implementation will guarantee that the kernel
language satisfies its semantics despite malicious interference by programs written in
it.

The initial kernel language will be as close as possible to the general kernel lan-
guage of Oz, which has a complete and simple formal semantics as given in chapter 13
of [VH04]. This is the most complete formal semantics of Oz that exists currently. As
far as we know, the relevant part of the Mozart system implements this semantics. It
is straightforward to show that this kernel language satisfies basic security properties
such as secure closures (encapsulation based on lexical scoping), absence of ambient
authority, and unforgeable identity of kernel language entities.

In the rest of this subsection, we address two specific issues that are directly related
to the kernel language, namely authentication and finalization. Authentication is an
issue that is directly related to security. Finalization is an issue that is indirectly related
to security: the current design has problems that would make building secure systems
difficult.

We prefer the kernel language of Oz-E to be a subset of the full Oz-E language.
This will result in semantic clarity, uniformity of syntax, and simplicity, all important
pedagogical assets when teaching or learning Oz-E. Furthermore, the kernel language
subset will allow us to experiment with language extensions while staying within the
language.

10.3. The Layered Structure of Oz-E 269

Authentication via Token Equality

A basic requirement for building secure systems is authentication of authority-carrying
entities. Entities that were created by relied-upon third parties should be recognizable
with the help of the third party. This means that the entity needs an identity that is
unforgeable and unspoofable, otherwise a creator could never be sure the entity is really
the one it created earlier. Unforgeable means that it is impossible to create an identity
out of thin air that matches with the identity of an existing entity. Unspoofable means
that the authenticity check cannot be relayed (man in the middle attack).

The kernel language has to let us achieve these properties for its own authority-
carrying entities and also for user-defined entities built using the kernel language. Both
of these categories impose conditions on the kernel language semantics.

In this section, we examine these conditions. In the following paragraphs we use
the term “entity” to mean a language entity of a type that can carry authority (be a
capability), as opposed to pure data. Data has no identity. Oz has an equality operator
“==” that implements structural equality between data.

For kernel entities, authentication is achieved by the kernel language syntax and
semantics. The kernel semantics ensures that each newly created entity has a new
identity that does not exist elsewhere and that is unforgeable.

For user-defined entities, authentication has to be programmed. For example, a
user-defined entity type called “object” could use one-argument procedures for its im-
plementation. The identity of an object should then not be confused with the identity
of its procedure.

This implies that the kernel language should have operations to build unforgeable
and unspoofable identity into user-defined entities. The concepts chunk and name from
the Oz kernel language can be used for this purpose. A name is an unforgeable constant
with only one operation: token equality. A chunk is a record with only one operation:
field selection. Its field names are hidden and can be names (unguessable).

With chunks and names, it is possible to build an operation that wraps an entity in
a secure way, so that only the corresponding unwrap operation can extract the entity
from the wrapped one [VH04]. This is similar to the sealer/unsealer pairs [Mor73] in
the E language [Sti00, Mil06b].

Finalization

Finalization is a user-defined clean-up operation that is used for automatic memory
management. When an entity is no longer reachable from an active part of the pro-
gram, its memory can be reclaimed. Sometimes more than that has to be done for the
program invariants to maintained. For instance, a data structure that counts the number
of entities satisfying a particular property should be updated, or a file corresponding to
a descriptor should be closed. Finalization handles cases such as these.

The current finalization in Oz does not guarantee that an entity that became un-
reachable is no longer used. The last operation performed on an entity before it be-
comes unreachable should truly be the last operation performed on the entity. To guar-
antee this, we propose to follow the “postmortem finalization” technique (executor of
an estate), invented by Frank Jackson, Allan Schiffman, L. Peter Deutsch, and Dave
Ungar (We found no reference to their work on this topic). When an entity becomes
unreachable, the finalization algorithm invokes another entity, which plays the role of
the executor of the first entity’s estate. The executor will perform all the clean-up
actions but has no reference to the original entity.

270 Chapter 10. Designing a Capability Secure Language

10.3.2 Full Language

The full language has linguistic abstractions built on top of the kernel language and
(base) libraries written in the full language itself. Linguistic support means that there
is language syntax that is designed to support the abstraction. For example, a for loop
can be given a concise syntax and implemented in terms of a while loop. We say that
the for loop is a linguistic abstraction.

The full language has to be designed to support the writing of secure programs.
This implies building new abstractions for secure programming and verifying that the
current language satisfies the requirements for secure programming.

Modules and Functors

Like Oz, the full language Oz-E will provide operations to create and manipulate soft-
ware components. In Oz, these components are values, called functors, and are defined
through a linguistic abstraction. Functors are instantiated to become modules, which
are executing entities. Modules are linked with other modules through a tool called the
module manager. This linking operation gives authority to the instantiated module.

In Oz-E, the module manager has to be a tool for secure programming. For ex-
ample, it should be easy to run an untrusted software component in an environment
with limited authority, by linking it only to limited versions of running modules. Such
modules can be constructed on the fly by the user’s trusted shell or desktop program,
to provide the right capabilities to host programs. This mechanism can also be used for
coarse grained “sandboxing”, e.g. to run a normal shell with a limited set of resources.

10.3.3 Environment Interaction

The security of Oz-E must be effective even though the operating system and network
environments are largely outside of the control of the Oz-E application developers and
language developers. How can this be achieved? In the long term, we can hope that
the environment will become more and more secure and POLA compliant. In the short
term, we need libraries that provide controlled access to the operating system and to
other applications.

Security of an application ultimately derives from the user of the application. An
application is secure if it follows the user’s wishes. The user should have the ability to
express these wishes via a user-friendly graphical user interface. Recent work shows
that this can be done [Yee02]. For example, selecting a file from a browser window
gives a capability to the application: it both designates the file and gives authority
to perform an operation (such as edit) on the file. A prototype desktop environment,
CapDesk, has been implemented using these ideas. CapDesk shows that both security
and usability can be achieved on the desktop [SM02, Mil06b].

Oz has a high-level GUI tool called QTk. It combines the conciseness and manipu-
lability of the declarative approach with the expressiveness of the procedural approach.
QTk builds on the insecure module Tk and augments that functionality instead of re-
stricting it. QTk has to be modified so that it satisfies the principles enunciated in
[Yee02] and implemented in CapDesk.

10.4. Cross-Layer Concerns 271

10.4 Cross-Layer Concerns
The previous section presented a layered structure for the Oz-E language and system.
In general however, security concerns cannot be limited to a single layer in such a
structure. As explained in [MTS05], security concerns tend to be pervasive and not
easily separable from functionality concerns in general.

In this section we discuss three concerns that affect all layers:

• Pragmatic issues of how to make the language easy for secure programming.

• Safe execution on distributed systems.

• The need for reflection and introspection.

10.4.1 Pragmatic Issues in Language Design

A secure language should not just make it possible to write secure programs, it must
also make it easy and natural. Otherwise, one part of a program written with bad
discipline will endanger the security of the whole program. The default way should
always be the secure way. This is the security equivalent of fail-safe programming in
fault-tolerant systems.

We propose to use this principle in the design of the Oz-E concurrency model.
The two main concurrency models are message-passing concurrency (asynchronous
messages sent to concurrent entities) and shared-state concurrency (concurrent entities
sharing state through monitors). Experience shows that the default concurrency model
should be message-passing concurrency. This is not a new idea; Carl Hewitt anticipated
it long ago in the Actor model [Hew77, HBS73]. But now we have strong reasons for
accepting it. For example, the Erlang language is used for building highly available
systems [Arm03, AWWV96]. The E language is used for building secure distributed
systems [MSC+01, Mil06b]. For fundamental reasons, both Erlang and E use message-
passing concurrency.

We therefore propose for Oz-E to have this default as well. One way to realize
this is by the following semantic condition on the kernel language: cells can only be
used in one thread (cells are the structures that provide mutable state). Applying this
simple semantic condition would have as consequence that threads can communicate
only through dataflow variables (declarative concurrency) and ports (message-passing
concurrency).

10.4.2 Distributed Systems

The distribution model of Oz allows all language entities to be partitioned over a dis-
tributed system, while keeping the same semantics as if the entities were on different
threads in a single system, at least when network or node failures are not taken into
account. For every category of language entities (stateless, single-assignment, and
stateful) a choice of distributed protocols is available that minimizes network commu-
nications and handles partial failure gracefully. Fault-tolerant abstractions can be built
within the language, on top of this system.

We want to keep the Oz-E distribution system as close as possible to this model and
put the same restrictions on communication with remote threads as with local threads
(such restrictions were discussed in section 10.4.1).

272 Chapter 10. Designing a Capability Secure Language

The monolithic implementation of distribution in Mozart/Oz is currently being re-
placed by a modular implementation using the DSS (Distribution Subsystem) [BKB04,
Kli05, KMV06]. The DSS is a language-independent library, developed primarily by
Erik Klintskog and integrated into Oz by Boriss Mejias, that provides a set of protocols
for implementing network-transparent and network-aware distribution.

This section briefly considers the opportunities offered by the DSS to add secure
distribution to Oz-E.

Responsibility of the Language Runtime System

The division of labour between the DSS and the language system assigns the following
responsibilities to the language runtime system:

1. Marshaling and unmarshaling of the language entities.

2. Differentiating between distributed and local entities.

3. Mapping of Oz-E entities and operations to their abstract DSS-specific types,
which the DSS will distribute.

4. Choosing amongst the consistency protocols provided by the DSS, based on the
abstract entity types, and adjustable for individual entities.

Secure marshaling should not break encapsulation, and every language entity should be
allowed to specify and control its own distribution strategy and marshaling algorithm. E
provides such marshaling support via “Miranda” methods that every object understands
and that provide a safe default marshaling behavior which can be overridden.

Oz-E could build a similar implementation for the language entities that can per-
form method dispatching (e.g. objects). For the other entities (e.g. zero-argument pro-
cedures), Oz-E could allow specialized marshalers to be invited into the lexical scope
of an entity when it is created. Section 10.5.2 gives two examples of how invitation can
be implemented in Oz-E.

Alternatively, Oz-E’s kernel language could use only object-style procedures that
by default forward marshaling behavior to marshalers, and that can override this beha-
vior.

Depending on these choices, marshaling may need support at the kernel language
level. The other three responsibilities of the language system can be provided as part
of an Oz-E system library.

Responsibility of the Distribution Subsystem

The DSS itself takes responsibility for:

1. Distributing abstract entities and abstract operations.

2. Providing consistency, using the consistency protocols that were chosen.

3. Properly encrypting all communication, making sure that external parties cannot
get inside the connection.

4. Ensuring that it is unfeasibly hard to get (guess) access to an entity without hav-
ing received a proper reference in the legal way.

10.4. Cross-Layer Concerns 273

5. Authenticating the distributed entities to ensure that no entity is able to pretend
to be some other entity.

In [BKB04] the DSS is shown to have security requirements that are compatible with
the requirements for safely distributing capabilities. Three attack scenarios have been
investigated:

1. Outsider attacks. It should be impossible (infeasibly hard) for an attacker node
that does not have legal access to any distributed entities, to access an entity at a
remote site or to make such an entity unavailable for legal access.

2. Indirect attacks. It should be impossible for an attacker node that has legal access
to a distributed entity but not the one being attacked, to perform this kind of
intrusion or damage.

3. Insider attacks. It should be impossible for an attacker node that has legal access
to a distributed entity, to render the entity unavailable for legal access. This can
only be guaranteed for protocols that do not distribute or relocate state such as
protocols for asynchronous message sending or stationary objects (RPC), and
only if the attacker node did not host the original entity.

Apart from the requirements of the second scenario, the current DSS implementation
claims to follow all these requirements. DSS distribution protocols will be made robust
to ensure that no DSS-node can be crashed – or forced to render entities unavailable
for legal access – by using knowledge of the implementation. This is called “protocol
robustification” and is still under development.

The fact that only asynchronous message sending and RPC-style protocols are pro-
tected from insider attacks is no objection for Oz-E. In section 10.4.1 such restriction
was already put on the interaction between entities in different threads: normal threads
on a single node will not be able to share cells.

10.4.3 Reflection and Introspection
To verify security properties at runtime, we propose to add the necessary primitive
operations to the kernel language, so that it can be programmed in Oz-E itself. To
what degree should an entity be able to inspect itself, to verify security properties? The
problem is that there is a tension between introspection and security. For example,
a program might want to verify inside a lexically scoped closure. Done naively, this
breaks the encapsulation that the closure provides. In general, introspection can break
the encapsulation provided by lexical scoping.

To avoid breaking encapsulation the E language allows a user-defined entity to in-
vite relied-upon third parties (auditors) to inspect an abstract syntax tree representation
of itself, and report on properties that they find. Section 10.5.2 shows with a code
example how this could work in Oz-E.

Safe Debugging

In a distributed environment, where collaborating entities spread over different sites
have different interests, how can debugging be done? The principle is similar to safe
introspection: entities are in control of what debugging information they provide, and
the debugger is a third party that may or may not be “invited into the internals” of the
entity.

274 Chapter 10. Designing a Capability Secure Language

Code Verification

Loaded code should not be able to bring about behavior which exceeds behavior that
could be described within the kernel language. Since we plan to use the Oz VM to run
Oz-E bytecode, and the Oz VM itself provides no such guarantee, we must verify all
code before loading it. Such verification of byte code is a cumbersome and error-prone
task. Oz-E should therefore be restricted to load code from easily verifiable abstract
syntax tree (AST) representations of kernel and full language statements, instead of
byte code.

10.5 Some Practical Scenarios

In this section we take a closer look at how some of these ideas could be implemented.
We want to stress that the examples only present one of the many possible design
alternatives and do not express our preferences or recommendations. They are only
provided as a clarification to the principles and as a sample of the problems that Oz-E
designers will need to solve.

10.5.1 Implement Guards at what Level?

In section 10.2.2 we explained briefly the benefits of guards and how they are supported
in E. Let us now show in pseudocode how expressions could be guarded in Oz-E and
how a linguistic abstraction for guards could look like.

fun {EnumGuard L}
if {Not {List.is L}}
then raise notAList(enumGuard) end
end
for X in L do {Wait X} end
proc {$ X}

try
if {Member X L}
then skip
else raise guardFailed(enumGuard) end
end

catch _ then
raise guardFailed(enumGuard) end

end
end

end
Trilogic = {EnumGuard [true false undefined]}
{Trilogic (x == y)} % will succeed
{Trilogic 23} % will raise an exception

Figure 10.3: A three valued logic type guard

The example in Figure 10.3 guards a three valued logic type consisting of true,
false, or unknown. EnumGuard ensures that the set is provided as a list and that all its
elements are bound. Then it creates a single parameter procedure that will do nothing
if its argument is in the set, or raise an exception otherwise. A guard Trilogic is

10.5. Some Practical Scenarios 275

created from that, and tested in the two last lines. The first test will succeed, the second
one will raise an exception.

What if we want to use this guard in a procedure declaration? Let us first assume
we want to guard an input parameter, in this case X. Then:
proc {$ X:Trilogic ?Y} <S> end

can be translated into:
proc {$ X ?Y} {Trilogic X} <S> end

Guarding output parameters is more difficult. If Y is unbound then:
proc {P X ?Y:Trilogic} <S> end

can be translated as shown in Figure 10.4. Note that in Figure 10.4 the expression

proc {$ X ?Y}
Y2

in
thread

try {Trilogic Y2} Y = Y2
catch Ex
then Y = {Value.failed Ex}
end

end
<S>{Y->Y2} %(1)

end

Figure 10.4: Guarding output parameters

marked (1) represents the statement <S> in which all free occurrences of the identifier
Y are replaced by an identifier Y2 which does not occur in <S> (see chapter 13 of
[VH04]).

These examples work for atomic values that are either input or output parameters,
but they cannot simply be extended for guarding partial values, because the latter can
be used for both input and output at the same time. Another problem is the relational
programming style where all parameters can be input, output or both depending on
how the procedure is used. This definitely calls for more research, which may possibly
reveal the need for a new primitive to support guards.

10.5.2 A Mechanism for Invitation and Safe Introspection

Let us assume we have a new construct NewProc that takes an abstract syntax tree
(AST) and an environment record mapping the free identifiers in the AST to variables
and values, and returns a procedure. Instead of creating a procedure like this:
P1 = proc {$} skip end

we could now also create a procedure like this:
P1 = {NewProc ast(stmt:´skip´) env()}

To create an audited procedure, an auditor is invoked with an AST and an environment.
The client of the procedure can call the auditor to inquire about the properties that it
audits. Let’s build an auditor to check declarative behavior. We first present one that
keeps track of the declarative procedures it creates.

Figure 10.5 builds an auditor procedure that takes a message as argument. If the
message matches createProc(...) it will investigate the AST and environment
provided, and create a procedure by calling {NewProc ...} with the same arguments.

276 Chapter 10. Designing a Capability Secure Language

declare
local

AuditedProcedures = {NewCell nil}
fun {Investigate AST Env}

... % return boolean indicating whether
% {NewProc AST Env} returns a declarative procedure

end
proc {MarkOK P} % remember that P is declarative

AuditedProcedures := P | @AuditedProcedures
end
fun {IsOK P} % checks if P is marked declarative

{Member P @AuditedProcedures}
end

in
proc {DeclarativeAuditor Msg}

case Msg
of createProc(Ast Env ?P) then

if {Investigate Ast Env}
then

NewP = {NewProc Ast Env}
in

{MarkOK NewP}
P = NewP

else P = {NewProc Ast Env}
end

[] approved(P ?B) then
B = {IsOK P}

end
end

end

P1 = proc {$} skip end
P2 = {DeclarativeAuditor createProc(ast(stmt:´skip´) env())}
P1OK = {DeclarativeAuditor approved(P1 $)} % P1OK will be false
P2OK = {DeclarativeAuditor approved(P2 $)} % P2OK will be true

Figure 10.5: Stateful auditor that investigates declarativity

10.5. Some Practical Scenarios 277

If the investigation returned true, it will store the resulting procedure in a list of all
the created procedures that succeeded the Investigate test. If the message matches
approved(...) it will check this list.

Rees [Ree96] gives strong arguments against the approach of Figure 10.5, as it
easily leads to problems with memory management, performance, and to semantic
obscurity. For this reason W7 – like E – has chosen to provide a primitive function to
create sealer-unsealer pairs. Figure 10.6 provides an alternative approach that avoids
these drawbacks.

declare
local

Secret = {NewName}
fun {Investigate AST Env}

... % return boolean indicating whether
% {NewProc AST Env} returns a declarative procedure

end
fun {MarkOK P}

WrappedP in
... % wrap P in some sort of invokable chunk WrappedP
... % WrappedP when invoked, will transparently invoke P
WrappedP.Secret = ok
WrappedP

end
fun {IsOK P} % checks if P is marked declarative

try P.Secret == ok catch _ then false end
end

in
proc {DeclarativeAuditor Msg}

case Msg
of createProc(Ast Env ?P) then

if {Investigate Ast Env}
then P = {MarkOK {NewProc Ast Env $}}
else P = {NewProc Ast Env}
end

[] approved(P ?B) then
B = {IsOK P}

end
end

end

Figure 10.6: Stateless auditor that investigates declarativity

The auditor built in figure 10.6 is stateless, and lets MarkOK wrap the created proce-
dure in a recognizable entity that can be invoked as a normal procedure. An invokable
chunk would do for that purpose, as it could have a secret field accessible by the name
Secret known only to the auditor. For this to work, Oz-E’s kernel language has to
provide either invokable chunks or a primitive function to create sealer-unsealer func-
tions.

Instead of providing the environment directly for the auditor to investigate, [Rei04]
suggests a mechanism to manipulate the values in the environment before giving them
to the auditor (e.g. by sealing) to make sure that they cannot be used for anything else
than auditing.

278 Chapter 10. Designing a Capability Secure Language

Instead of inviting an auditor, one could invite a relied-upon third party that offers
general introspection and reflection. It would have roughly the same code-frame as the
auditor, but provide more detailed – and generally non-monotonic – information about
the internal state and the code of the procedure.

10.6 Conclusions and Future Work
A long-term solution to the problems of computer security depends critically on the
programming language. If the language is poorly designed, then assuring security be-
comes complicated. If the language is well-designed and consistently supports and
promotes the principle of least authority, then assuring security becomes much sim-
pler. With such a language, problems that appear to be very difficult such as protection
against computer viruses and the trade-off between security and usability become solv-
able [Stib].

A major goal of Oz language research is to design a language that is as expressive
as possible, by combining programming concepts in a well-factored way. The current
version of Oz covers many concepts, but it is not designed to be secure. This chapter
gave a rough outline of the work that has to be done to create Oz-E, a secure version of
Oz that supports the principle of least authority and that makes it possible and practical
to write secure programs.

Building Oz-E will be a major undertaking that will require the collaboration of
many people. But the potential rewards are proportionally great. This initial investi-
gation may be a starting point for future work by language designers who share this
vision and want to participate in the project.

Chapter 11

Research Context and Agenda

The principles and ideas that were developed in this thesis have been applied only at
a very small scale and in a limited context. In this chapter we situate this work in the
broader context of related research, and we list the opportunities we think are the most
important and appealing, for applying related and extended research in this broader
context.

SCOLL concepts and technology were built upon foundations from a large volume
of previous research work, performed by a growing community of software security
researchers. Publications and experiences in the fields of capability based security,
secure programming languages, and secure operating systems, were a crucial step-
stone for our work. In comparison to the major achievements that were made in these
areas of software security, our direct contributions can only be qualified as limited and
of moderate importance.

Nevertheless, we are convinced that, when applied properly and developed to its
full potential, our approach represents a crucial factor to:

1. Improve the practical applicability to software engineering, of the many existing
results in software security.

2. Enable the formal investigation and comparison of alternative architectures and
implementations of protection systems.

3. Enable the implementation of programming languages, environments and tools
for provably secure programming.

4. Enable the design and implementation of software integration tools for provably
secure integration at different levels of granularity: from complete applications,
via components of different size and complexity, to the finest grained objects and
procedures in the software.

5. Enable the implementation of provably secure operating systems.

6. Enable the practical and quantifiable application of the principle of least autho-
rity (POLA, Section 1.3.4) in software engineering and other fields.

279

280 Chapter 11. Research Context and Agenda

11.1 Related and Useful Formalisms
This section discusses alternative formal approaches to safety analysis in software en-
gineering, and interesting formal approaches to software analysis that may be used in
the future to extend our work.

We restrict our scope to models that can consider individual software entities of
arbitrary size and nature. Many formal safety models were built to reason about con-
finement between processes on the base of the user on whose behalf the processes run.
These models are usually insufficiently expressive for our purpose, because we want to
apply the principle of least authority at all levels in the software (Section 1.3.4).

Except for the KBM-based semantics of SCOLL, none the many formal models we
encountered during our research provide a practical and meaningful way to aggregate
subjects or to declare and refine subject behavior.

11.1.1 The (Extended) Schematic Protection Model
The relation between Schematic Protection Models (SPM) [San88] and Take Grant
models is described in [Bis04]. SPM introduce a static notion of “protection type”,
which is assigned to a subject upon its creation, never to be changed thereafter. Like
SCOLL and its KBM semantics (Chapters 5 and 6), SPM can therefore express rules
for the propagation of authority that depend on the type of the subjects that are in-
volved. A ticket in SPM is a description of a single right over another entity, similar to
a capabilitiy in Take-Grant models.

From the tickets, link predicates can be constructed (using conjunction and dis-
junction but not negation) to express the permission-based preconditions of the rules.
Based on the protection types, filter functions can be constructed to express extra pre-
conditions for the propagation of tickets. Filter functions map couples of subjects to
sets of tickets, to specify what tickets can be transferred from the first subject to the
second one, when the link predicates are satisfied.

Like Take-Grant models, SPM provides direct support for the creation of new sub-
jects of a certain type, only there can now be any number of types.

The expressive power of SPM, due to its powerful filter functions, allows SPM to
express arbitrary SCOLL programs and KBM configurations. Because KBM configu-
rations never grow in number of subjects, the converse is not true.

While SPM is a higher level model than HRU, and while it is also considerably
more expressive than Take-Grant models, it was not conceived to make it easy to ex-
press subject behavior. Behavior based rules for the propagation of authority and per-
missions are very easily expressed in SCOLL, using the behavior predicates that can
be declared in the language itself, and that can be refined when possible.

Bishop gives an example of collaboration under mutual distrust in [Bis04] to indi-
cate an important drawback of SPM. To enable the collaboration between two untrusted
parties, both parties create their own restricted proxy and introduce the proxies to each
other, so as to interact via multiple indirections. To model this simple example that is
very relevant to software engineers, a complex set of rights and manipulations has to
be set up. Extended SMP (ESMP) is then introduced to solve this problem by provi-
ding support to model multi-parenthood: creation can now be a joint operation between
multiple subjects.

While multi-parenthood can be an interesting idea at a certain level of abstraction,
not many programming languages provide direct support for it. Moreover, most soft-
ware engineers will not use it in connection with problems that can be solved easily

11.1. Related and Useful Formalisms 281

with a couple of proxy patterns. The reader is invited to compare this approach to the
natural and simple way in which section 8.3.1 (the membrane pattern) models a pattern
that contains arbitrary many indirections and also proves it to be safe.

11.1.2 The Web-calculus
The web-calculus [Clo04] formally models the interaction of services and applications
at an interface (specification) level. Its models are directed graphs in which the nodes
represent static components, and the edges represent links (references) between them.

In the web-calculus the dynamic reference graph itself is the carrier of all state.
While nodes themselves do not carry internal state, some of the edges do. The outgoing
edges of a node are called “branches”. Branches can represent access channels through
which the other nodes can be accessed, or closures with encapsulated state and a single
anonymous method that can be invoked. The latter edges are labeled with a verb, the
former with a noun.

Closures are invoked with a fixed input parameter (node or edge), and return a
single output (node or edge. The invocation of a closure may grow the web (add new
connected nodes to the graph) and/or reassign existing edges.

A small set of operations on edges is defined on the web-calculus, of which the
most important ones are:

GET : retrieves the current target node of the edge. Its purpose is to provide graph
inspection.

POST : invokes the closure associated with an edge on a list of input arguments. Its
purpose is to provide graph mutation.

The web-calculus is an extension of the REST model (Representational State Trans-
fer) [Fie00], to which the following elements are added:

1. a capability based security model

2. a model for the internal structure of a representation

3. a mechanism for defining the structure of a (web-) resources

4. a generic interface for distributed computation

The web-calculus principles are implemented in the WaterkenTMServer [Clo], an
extensible HTTP server and web services platform.

It is interesting future work to investigate the relation between SCOLL and the
web-calculus, to compare their respective possibilities, expressive power, and practical
applicability in different situation, and to search for elements in either formal systems
that can be assimilated to enrich the other one.

11.1.3 The Refinement Calculus
The refinement calculus [BvW98] is a formalization of the stepwise refinement method
of program construction. The required behaviour of the program is specified as an ab-
stract program which is then refined by a series of correctness-preserving transforma-
tions into an actual executable program.

Refinement is a transitive relation between the abstractions of a program. Refine-
ment is also compositional, which allows subprograms and eventually statements to be

282 Chapter 11. Research Context and Agenda

refined separately. Specification statements consist of a precondition and a postcondi-
tion.

The refinement calculus has a set of laws that each describe a legal way to refine
an abstract statement. It is always a legal refinement to strengthen the postcondition or
to weaken the precondition. Other laws describe the introduction of certain constructs
to the program, the elimination of certain constructs from it, the transformation of
constructs and the composition of subprograms and statements.

The refinement calculator [BGL+97] is a tool that supports the application of the
refinement calculus to program development. The tool is built on the HOL theorem
proving system [Bow] and has a practical graphical user interface with menus for trans-
formations.

The refinement calculus focusses on preserving the correctness while refining from
a more abstract model of the program to a less abstract model and eventually to a model
that can easily be translated to a certain programming language. That translation step
is not part of the refinement calculus.

The refinement calculus is applied to security verification in Java by the KindSoft-
ware research group [KPC05].

We see several possible fields for future applications in SCOLL of the refinement
calculus or similar calculi that may be derived from it:

1. The refinement of behavior predicates and the corresponding knowledge pred-
icates were discussed in sections 5.5, 5.6.2 and 6.7.1. With minor adaptations,
the refinement calculus could be applied to automate the process of behavior
refinement.

2. The transformation of program code to SCOLL code could be automated and
based on a set of laws similar to the refinement calculus laws. Only this time the
transformation would go from more concrete to more abstract models, in steps
that preserve safe approximation.

3. To provide concrete examples of safe patterns in SCOLL, the transformation of
SCOLL code to program code could be automated, also based on a set of laws
similar to the refinement calculus laws. This time the transformation would go
from less concrete to more concrete models, using the reverse steps.

11.1.4 The Situation Calculus

The situation calculus is based on the work of Judea Pearl [Pea00] and formalizes the
notions of causality and causal influence. The formalism allows us to express and
handle counterfactual queries: questions asking whether event B could have occurred
if event A had not occurred.

Causal Models

Causal models exist of two disjunct sets of variables, exogenous (U) and endogenous
(V), and a set of functions FX , for every variable X ∈ V , that map every interpretation
of V \X to a value for X . The set of variables whose values affect the value of X is
called the parent set of X , denoted PAX .

Causal models are depicted in a causal diagram : a directed graph whose nodes
correspond to the variables in U ∪ V and whose edges represent the parent relation.

11.1. Related and Useful Formalisms 283

If a particular interpretation for the exogenous variables is assumed, the causal
model is called a causal world. It is assumed that in a causal word the values for the
endogenous variables is determined by the interpretation for the exogenous variables.
That is always the case if the causal diagram is acyclic.

Counterfactual queries are defined using the concept of submodel. A submodel of a
causal model under the intervention X = x defines a causal model where the function
FX is replaced by the constant function x.

Extensions in the Situation Calculus

The situation calculus [Hop02] extends the notion of causal model to include:

Objects : The variables represents objects in the real world, about whom the model
will reason in a first order predicate logic.

Actions : Predicates, expressing relations between one or more objects to indicate
events.

Situations : A sequence of actions, representing a possible world history.

Relational Fluents : Predicates whose last argument is a situation, to represent situ-
ation dependent predicates.

Functional fluents : Functions whose last argument is a situation, to represent situa-
tion dependent functions.

Initial Database Axioms : First-order situation calculus sentences which describe the
initial state of the system.

Action Precondition Axioms : First-order situation calculus sentences which describe
the conditions that must hold in order for an action to be permissible in a given
situation.

Successor State Axioms : First-order situation calculus sentences which how fluents
change in response to actions.

We find many intuitive similarities between SCOLL and the situation calculus,
which is not very surprising since SCOLL was designed to reason about the upper
bounds of authority, and authority can be described as causal influence between the
entities in the model.

Objects loosely correspond to subjects, actions to behavior predicates, relational
fluents to SCOLL’s goal part, and initial database axioms to the config part. The
action predication axioms can intuitively be interpreted as system rules, and the suc-
cessor state axioms to behavior rules.

These vague and intuitive correspondences ask for a further investigation of the for-
mal relations between SCOLL and the situation calculus. This may reveal interesting
insights and show opportunities to expand SCOLL’s expressive power, for instance to
directly express safety concerns about what subjects should not cause what effects.

284 Chapter 11. Research Context and Agenda

11.2 Approaches and Technologies to Optimize SCOL-
LAR

SCOLLAR is not merely used as a theorem prover, but also to find provably safe so-
lutions to initial configurations and subject behavior. It was straight forward to imple-
ment this extension (second operation mode) because the tool was based on constraint
programming technology. We only had to use the search facilities provided by the CP
library.

The current version of SCOLLAR is a prototype implementation that can be used
for relatively small patterns, but does not scale well. Several approaches and techniques
can be applied to improve its performance and scalability:

Model optimization The performance of contraint programming tools is extremely
sensitive to the way the problems are modeled. Our current experiences with the
CP based implementations of SCOLLAR lead us to conclude that the approach
using finite domain variables provides adequate performance for simple patterns.

The finite set approach is slower for small patterns, but its performance degrades
less with increased size. The performance may benefit from a problem dependent
choice between both approaches, or even from a mix of them.

Problem-specific optimization Given a problem and its representation as constraints
in CP, many standard optimizations techniques can be applied. For instance,
symmetry breaking is a technique to remove all solutions that are equivalent in
some way. It can be applied in situations where unknown entities have access
to each other, because their maximal behavior allows us to consider them as one
unknown subject.

A generalization of this technique can be interpreted as partial-aggregation-on-
the-fly : certain sets of predicates concerning certain sets of subjects can be
aggregated and treated as one, as soon as the subjects have exceeded a certain
limit of behavior and authority during the calculation.

Such optimizations can have an important impact on performance and scalability,
because they reduce the depth of the search tree.

Graph constraints Chapter 9 discussed an alternative approach based on graph ana-
lysis, using the global DomReachability constraint over graphs [Que06b]. The
approach is applicable to a specific subset of SCOLL patterns, in which the
authority propagating behavior of the subjects can easily be expressed as a bi-
nary, transitive relation. The approach can provide important advantages when
calculating solutions to the patterns in that subset.

Similar problem-specific approaches could be built into SCOLLAR to improve
its overall performance and scalability.

Alternative CP libraries It is to be expected that the use of the GCode library [Sch]
in Oz will improve performance with several orders of magnitude, as that library
was designed for improved speed.

Alternatives to CP We feel that constraint programming is the most appropriate base
technology for the problems SCOLLAR is solving, but there may be situations
and patterns in which alternatives can improve performance and scalability.

11.3. Improved Expressive Power 285

We experimented briefly with classical SAT solvers [sat], but the approach did
not yet provide promising results, mainly because these solvers require every-
thing to be declared up front. Not only all predicate facts, but also all instanti-
ations of the system rules and the behavior rules have to be declared before the
computation can start.

Implementing a SAT solver that can instantiate rules and declare variables on
demand would be an interesting idea for future research. It was shown that, in
Oz, on-demand computation is part of the declarative subset [SCR03]. Therefore
on-demand computation can be fitted seamlessly in declarative techniques like
constraint programming.

11.3 Improved Expressive Power

11.3.1 More Expressive Behavior
In section 5.6.2 we already mentioned the possibility to provide support for refined
predicates, given a general refinement lattice. Future extensions will improve the ex-
pressive power to express behavior by providing support in SCOLL for :

• data propagation,

• propagation of multiple arguments in a single invocation,

• non monotonic behavior changes,

• and behavior and knowledge inheritance.

11.3.2 More Expressive Goals
The dominator part of DomReachability (Chapter 9) can be of direct use to add expres-
sive power to the safety goals in SCOLL. For instance, instead of simply stating that
some effect (authority) should be prevented, we could instead require that all authority
of a certain kind should only ever be available via a subject that we rely upon to revoke
the authority in due time..

In the authority flow graph (to be derived from the access graph) a relied upon
subject alice can revoke all bob’s authority over carol, if alice dominates bob
in the authority-flow graph of which carol is the source.

This is an example of a more general approach we consider worth pursuing in the
future: to loosen the strict correspondence between goals and predicates. While per-
mission predicates, behavior predicates, and knowledge knowledge predicates are basic
elements in SCOLL, there is no reason to limit the concerns for safety and liveness to
those that can be expressed directly as conjunctions of predicates.

In fact, the limitation is unnatural and may force the user to model extra predicates
and rules for the sole purpose of expressing and deriving the properties about the state
that are crucial for the safety policy. Besides flow graph based constraints, all kinds of
constraints can be considered, including:

• Sentences constructed from predicates and arbitrary logical connectives. For
instance to express conditional safety concerns or disjunctions.

• Counterfactual constraints (see section 11.1.4) to directly express requirements
about causality: who is not allowed to cause what effects in what way.

286 Chapter 11. Research Context and Agenda

• Other constraints that correspond to safety properties, authority flow constraints,
or counterfactual constraints in models that are derived from the situation can
be used to express requirements concerning the history of the program state,
revocability, repeatability, etc.

11.4 Opportunities for Integration

To improve the usability of SCOLL, it should be integrated into programming environ-
ments. Ideally the developer should be warned immediately if he writes or adapts code
that renders his safety requirements unprovable. The developer would then have the
choice to adapt his code or to ask the environment to suggest appropriate refinements
of the predicates used in the model.

To integrate SCOLL as a tool in programming environments, we need to investigate
approaches and techniques for the transformation from source code to SCOLL models
and back. Figure 11.1 shows an overview of the components that are involved in this
transformation.

Figure 11.1: Components in the transformation between source code and SCOLL

Abstract Interpretation seems to be a promising technique for the transformation.
Integrating the refinement calculus into such an approach could be very effective. Ab-
stract interpretation of source code and SCOLL code would then result in a refinement
calculus representation, that could be transformed in either directions as described in
section 11.1.2.

11.4.1 SCOLL Carrying Code

In analogy to abstraction carrying code [HALGP05] and model carrying code [SRRS01],
source code could also be adorned with a SCOLL model and a proof that the model
safely approximates the actual code.

11.5. Other Opportunities and Applications 287

A simple and fast inspection of the proof would reveal its validity and whether the
SCOLL model is indeed a safe approximation of the program. Integration of several
such programs would result in a composed SCOLL model of which we can immedi-
ately inspect the safety properties.

The approach could provide automated acceptance or rejection of a software com-
ponent to be integrated into existing software.

11.5 Other Opportunities and Applications

11.5.1 User Interface
Currently the graph visualization only works for the access graph. Only the binary
permission access is represented in a graph. The user should have the possibility to
visualize different aspects of the configuration and of the derived authority flow graphs.

11.5.2 Type Safety Analysis
In “Lightweight static capabilities” [KS06] Kiselyov and Shan propose a modular pro-
gramming style that harnesses modern type systems to verify safety conditions. Their
style has three ingredients:

1. A compact kernel of trust that is specific to the problem domain

2. Unique names (capabilities) that confer rights and certify properties, so as to
extend the trust from the kernel to the rest of the application.

3. Static type proxies for dynamic values

They illustrate that their approach can provide statically provable type safety in
dynamically typed languages. We have the strong impression that their proposed way
of checking type safety corresponds to SCOLL patterns in which al entities of the same
type are aggregated into a single subject they call the type proxy.

The relation between their approach and SCOLL needs further investigation, as it
holds a possibility for another application area for SCOLL.

Chapter 12

Conclusions

When practicing secure programming, it is important to understand the restrictive in-
fluence programmed entities have on the propagation of authority in a program. To
precisely model authority propagation in patterns of interacting entities, we introduced
a new and practical formalism: Knowledge Behavior Models (KBM).

KBM allows reasoning about safety requirements in patterns of interacting entities,
and has the required expressive power to be useful in secure software engineering.
KBM provides an intuitive and expressive way to model, at an appropriate level of
detail, the influence of the behavior of the entities on the maximal authority that can be
deployed in a system.

We introduced the technique of aggregation to model all entities into a fixed and
finite set of subjects and proved that aggregation results in safe approximations. Be-
cause of aggregation, KBM provides a tractable way to calculate a non trivial bound
on behavior-based eventual authority.

The Safe Collaboration Language (SCOLL) is a new domain specific declarative
language to express these patterns and to prove their safety or find maximal bounds
for permissions and behavior that guarantee provably safe alternatives for the pattern.
SCOLL supports an iterative, incremental approach to behavior model refinement.
SCOLL can start with a safe but possibly too crude model and allows a gradual re-
finement of the model (while keeping it safe) when and where necessary. The language
has a logical semantics that was expressed by means of KBMs.

To calculate the solutions for the safety problems expressed in SCOLL we have
built SCOLLAR: a new tool for safety analysis, based on constraint logic programming
and aimed at engineers and developers of secure software.

Several non-trivial examples showed the utility of the SCOLL based approach. Us-
ing SCOLL and SCOLLAR we showed that, by relying only on a programming lan-
guage’s runtime restrictions (e.g. capability safe languages) and on the behavior of
strategically positioned entities, we can program many security policies that hold in
the presence of arbitrary many untrusted entities.

The language and the tool encourage the investigation of additional or alternative
safety mechanisms beyond capability-based protection systems, including mechanisms
that perform access control by runtime reference monitoring. Its versatility makes the
approach useful to illustrate and compare the safety and expressive power of alternative
protection systems. This advantage is also interesting from a pedagogical point of view.

We expect that further development of this approach into a production-ready de-
velopment aid will allow software providers and developers to take more, realistic, and

289

290 Chapter 12. Conclusions

well defined responsibility for the security of their code, including legal responsibility.

Publications

Publications arising from this thesis include:

Alfred Spiessens, Raphael Collet and Peter Van Roy (2003), Declarative Laziness in
a Concurrent Constraint Language. Proceedings of the 2nd International Work-
shop on Multiparadigm Constraint Programming Languages.
http://uebb.cs.tu-berlin.de/MultiCPL03/.

Fred Spiessens and Peter Van Roy (2005), The Oz-E Project: Design Guidelines for
a Secure Multiparadigm Programming Language. “Multiparadigm Program-
ming in Mozart/Oz: Extended Proceedings of the Second International Confer-
ence MOZ 2004”. Lecture Notes in Computer Science, Volume 3389. Springer
Verlag. Berlin. Germany.

Fred Spiessens and Peter Van Roy (2005), A Practical Formal Model for Safety Ana-
lysis in Capability-Based Systems. Workshop on Trusted Global Computing
2005. Lecture Notes in Computer Science, Volume 3705, pages 248–278. Springer
Verlag. Berlin. Germany.

Yves Jaradin, Fred Spiessens, and Peter Van Roy (2005), SCOLL : A Language for
Safe Capability Based Collaboration. Research Report INFO-2005-10 Univer-
sité catholique de Louvain. Louvain-la-Neuve Belgium.

Fred Spiessens, Yves Jaradin, and Peter Van Roy (2005), Using Constraints To Ana-
lyze And Generate Safe Capability Patterns. First International Workshop on Ap-
plications of Constraint Satisfaction and Programming to Security (CPSec’05).
Research Report INFO-2005-11 Université catholique de Louvain. Louvain-la-
Neuve Belgium.

Fred Spiessens, Yves Jaradin, and Peter Van Roy (2005), SCOLL and SCOLLAR:
Safe Collaboration based on Partial Trust. Research Report INFO-2005-12 Uni-
versité catholique de Louvain. Louvain-la-Neuve Belgium.

291

http://uebb.cs.tu-berlin.de/MultiCPL03/

292 Chapter 12. Conclusions

Bibliography

[AP67] William B. Ackerman and William W. Plummer. An implementation of a
multiprocessing computer system. In SOSP ’67: Proceedings of the first
ACM symposium on Operating System Principles, pages 5.1–5.10, New
York, NY, USA, 1967. ACM Press. 4

[Arm03] Joe Armstrong. Making Reliable Distributed Systems in the Presence
of Software Errors. PhD thesis, Royal Institute of Technology (KTH),
Stockholm, December 2003. 10.4.1

[AWWV96] Joe Armstrong, Mike Williams, Claes Wikström, and Robert Virding.
Concurrent Programming in Erlang. Prentice-Hall, Englewood Cliffs,
NJ, 1996. 10.4.1

[BGL+97] Michael Butler, Jim Grundy, Thomas Långbacka, Rimvydas Rukšėnas,
and Joakim von Wright. The refinement calculator: Proof support for
program refinement. In Lindsay Groves and Steve Reeves, editors, For-
mal Methods Pacific’97: Proceedings of FMP’97, Discrete Mathemat-
ics and Theoretical Computer Science, pages 40–61, Wellington, New
Zealand, July 1997. Springer-Verlag. 11.1.3

[Bis81] Matt Bishop. Hierarchical take-grant protection systems. In Proceedings
of the eighth ACM symposium on Operating systems principles, pages
109–122. ACM Press, 1981. 3

[Bis04] Matt Bishop. Computer Security : Art and Science. Addison Wesley,
September 2004. 1.3.1, 2.1.1, 11.1.1

[BKB04] Zacharias El Banna, Erik Klintskog, and Per Brand. Report on security
services in distribution subsystem. Technical Report PEPITO Project De-
liverable D4.4 (EU contract IST-2001-33234), K.T.H., Stockholm, Jan-
uary 2004. 10.4.2, 10.4.2

[BL74] D.E. Bell and L. LaPadula. Secure Computer Systems. In ESD-TR, pages
83–278. Mitre Corporation, 1974. Electronically available at:
http://www.albany.edu/acc/courses/ia/classics/
belllapadula1.pdf. 9.4.3

[Boe84] W. E. Boebert. On the inability of an unmodified capabi-
lity machine to enforce the *-property. In Proceedings of 7th
DoD/NBS Computer Security Conference, pages 45–54, September
1984. http://zesty.ca/capmyths/boebert.html. 3.4.4, 4.1, 4.5, 8.4, 8.4.2

293

294 BIBLIOGRAPHY

[Bow] Jonathan Bowen. The hol theorem prover. http://vl.fmnet.
info/hol/. 11.1.3

[BS79] Matt Bishop and Lawrence Snyder. The transfer of information and
authority in a protection system. In Proceedings of the seventh ACM
symposium on Operating systems principles, pages 45–54. ACM Press,
1979. 2.1.1, 3, 3.2, 3.2.1, 3.3.2

[BvW98] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Sys-
tematic Introduction. Springer-Verlag, 1998. Graduate Texts in Com-
puter Science. 11.1.3

[Cap] Cap-talk mailing list.
http://www.eros-os.org/mailman/listinfo/cap-talk.
4.2

[CF91] R. Cartwright and M. Fagan. Soft typing. In Proceedings of the SIGPLAN
’91 Conference on Programming Language Design and Implementation,
pages 278–292, 1991. 10.2.2

[Clo] Tyler Close. Waterken TMserver. http://www.waterken.com/
dev/Server/. 11.1.2

[Clo04] Tyler Close. Web calculus. http://www.waterken.com/dev/
Web/, 2004. 11.1.2

[CMP00] Emmanuel Chailloux, Pascal Manoury, and Bruno Pagano.
Développement d’applications avec Objective Caml. O’Reilly &
Associates, Paris, 2000. 5.1

[DH65] Jack B. Dennis and Earl C. Van Horn. Programming semantics for mul-
tiprogrammed computations. Technical Report MIT/LCS/TR-23, M.I.T.
Laboratory for Computer Science, 1965. 4, 4.1, 2, 8.4.3, 9.4.4, 10.2.2

[Dij82] Edsger W. Dijkstra. On the Role of Scientific Thought. Springer Verlag,
1982. 8.5.4

[FA03] Thom Frühwirth and Slim Abdennadher. Essentials of Constraint Pro-
gramming. Cognitive Technologies. Springer, Sept 2003. 7.6

[FB96] Jeremy Frank and Matt Bishop. Extending The Take-Grant Protection
System, December 1996. Available at:
http://citeseer.ist.psu.edu/frank96extending.html.
3, 3.2.4

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-
based Software Architectures. Doctoral dissertation, University of Cali-
fornia, Irvine, California, 2000. 11.1.2

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison
Wesley, Massachusetts, 1994. 5.5.5, 10.2.2

http://vl.fmnet.info/hol/
http://vl.fmnet.info/hol/
http://www.waterken.com/dev/Server/
http://www.waterken.com/dev/Server/
http://www.waterken.com/dev/Web/
http://www.waterken.com/dev/Web/

BIBLIOGRAPHY 295

[GJ79] Michael Garey and David Johnson. Computers and Intractability: A
Guide to the The Theory of NP-Completeness. W. H. Freeman and Com-
pany, 1979. 9.4.1

[GM78] Herve Gallaire and Jack Minker, editors. Logic and Data Bases. Perseus
Publishing, 1978. 2.1.5, 5.7.2

[GN00] Emden R. Gansner and Stephen C. North. An open graph visualization
system and its applications to software engineering. Softw. Pract. Exper.,
30(11):1203–1233, 2000. 8.1.4

[Gon89] Li Gong. A Secure Identity-Based Capability System. In IEEE Sympo-
sium on Security and Privacy, pages 56–65, 1989. 4.1, 4.5, 8.4

[GV05] GraphViz - Graph Visualization Software, 2005.
http://www.graphviz.org/. 2.3.2, 8.1.4

[HALGP05] Manuel V. Hermenegildo, Elvira Albert, Pedro López-
García, and Germán Puebla. Abstraction carrying
code and resource-awareness. In PPDP ’05: Proceedings of the 7th
ACM SIGPLAN international conference on Principles and practice
of declarative programming, pages 1–11, New York, NY, USA, 2005.
ACM Press. 11.4.1

[Har85] Norman Hardy. Keykos architecture. SIGOPS Oper. Syst. Rev., 19(4):8–
25, 1985. 4

[Har88] Norman (Norm) Hardy. The confused deputy: (or why capabilities might
have been invented). SIGOPS Oper. Syst. Rev., 22(4):36–38, 1988. 4.6,
8.1.1, 8.1.1

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular AC-
TOR formalism for artificial intelligence. In 3rd International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 235–245, August 1973.
10.4.1

[Hew77] Carl Hewitt. Viewing control structures as patterns of passing messages.
Journal of Artificial Intelligence, 8(3):323–364, June 1977. 10.4.1

[HKN05] Shai Halevi, Paul A. Karger, and Dalit Naor. Enforcing confinement in
distributed storage and a cryptographic model for access control. Cryp-
tology ePrint Archive, Report 2005/169, 2005. 4.1, 4.5, 8.4

[HLS05] P.J. Hawkins, V. Lagoon, and P.J. Stuckey. Solving set constraint satisfac-
tion problems using robdds. Journal of Artificial Intelligence Research,
24:109–156, 2005. 9.5.1

[Hop02] M. Hopkins. Causality and counterfactuals in the situation calculus. Tech
Report R-301, UCLA Cognitive Systems Laboratory, 2002. 11.1.4

[HR78] Michael A. Harrison and Walter L. Ruzzo. Monotonic protection sys-
tems. Foundations of Secure Computation, pages 337–365, 1978. 1.3.1

296 BIBLIOGRAPHY

[HRU76] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection
in operating systems. Commun. ACM, 19(8):461–471, 1976. 2.1, 3, 3.1.2,
3.1.3, 3.1.3, 3.1.4, 3.1.5, 4

[HS06] Peter Hawkins and Peter Stuckey. A hybrid bdd and sat finite domain
constraint solver. In PADL 2006 Proceedings, volume 3819 of Lecture
Notes in Computer Science. Springer, 2006. 9.5.1

[JLS76] A. Jones, R. Lipton, and L. Snyder. A linear-time algorithm for decid-
ing security. In Proceedings of the 17th Symposium on Foundations of
Computer Science, pages 33–41, sep 1976. 3

[KGRB02] Alan H. Karp, Rajiv Gupta, Guillermo Rozas, and Arindam Banerji.
Split Capabilities for Access Control. Research Report HPL-2001-
164R1, HP Labs, Palo Alto, California, June 2002. Available at
http://www.hpl.hp.com/techreports/2001/HPL-2001-164R1.html. 3.4.1

[KL87] Richard Y. Kain and Carl E. Landwehr. On access checking in capability-
based systems. IEEE Trans. Softw. Eng., 13(2):202–207, 1987. 4.1, 4.5,
8.4

[Kli05] Erik Klintskog. Generic Distribution Support for Programming Systems.
PhD thesis, KTH Information and Communication Technology, Sweden,
2005. 10.4.2

[KMV06] Erik Klintskog, Boris Mejı́as, and Peter Van Roy. Efficient distributed
objects by freedom of choice. In Revival of Dynamic Languages,
ECOOP’06, July 2006. 10.4.2

[KN93] Eleftherios Koutsofios and Stephen C. North. Drawing graphs with dot.
Murray Hill, NJ, 1993. 8.1.4

[KPC05] Joe Kiniry, Erik Poll, and David Cok. Fm 2005 tutorial : ”design by
contract and automatic verification for java with jml and esc/java2”.
http://secure.ucd.ie/documents/tutorials/fm05.
html, 2005. 11.1.3

[KS06] Oleg Kiselyov and Chun-Chieh Shan. Lightweight static capabilities.
August 2006. Workshop “Programming Languages meets Program Ver-
ification” at the 2006 Federated Logic Conference. 11.5.2

[Lam73] Butler W. Lampson. A note on the confinement problem. Commun. ACM,
16(10):613–615, 1973. 2.1.4, 3.2.5, 8.3

[Lan06] Charles Landau. Mail subject: Ambient authority in DVH, July 2006.
http://www.eros-os.org/pipermail/cap-talk/
2006-July/005504.html. 4.2

[lit] Little Snitch R©. Commercial Software available at
http://www.obdev.at/products/littlesnitch/. (docu-
ment), 8.1.5

[LS77] R. J. Lipton and L. Snyder. A linear time algorithm for deciding subject
security. J. ACM, 24(3):455–464, 1977. 3.2.4

http://secure.ucd.ie/documents/tutorials/fm05.html
http://secure.ucd.ie/documents/tutorials/fm05.html

BIBLIOGRAPHY 297

[LT79] T. Lengauer and R. Tarjan. A fast algorithm for finding dominators in a
flowgraph. ACM Transactions on Programming Languages and Systems,
1(1):121–141, July 1979. 9.2.1

[McK] Matthew McKeon. The Internet Encyclopedia of Philosophy. http:
//www.iep.utm.edu/l/logcon.htm. 5.7.1

[Mil] Mark. S. Miller. The Confused Deputy.
http://www.erights.org/elib/capability/deputy.html.
8.1.1

[Mil03] Mark S. Miller. Building a Virus-Safe Computing Platform: Don’t Add
Security, Remove Insecurity, nov 2003. Talk given at the Information
Theory Seminar of Hewlett Packard Laboratories, and at the Stanford
Computer Systems Laboratory Colloquium.
http://www.cypherpunks.to/erights/talks/
virus-safe/dont-add.ppt. 10.1.3

[Mil06a] Mark S. Miller. Mail subject: Boebert attacks, capability review, July
2006.
http://www.eros-os.org/pipermail/cap-talk/
2006-July/005473.html. 8.4.3

[Mil06b] Mark Samuel Miller. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. PhD thesis, Johns Hopkins
University, Baltimore, Maryland, USA, May 2006. 1.3.6, 4.1, 4.1.6, 4.3,
5.1, 8.2.1, 8.2.1, 8.4, 9.4.4, 10.2.2, 10.2.2, 10.2.2, 9.4.3, 10.3.3, 10.4.1

[Mor73] James H. Morris. Protection in programming languages. Communica-
tions of the ACM, 16(1):15–21, 1973. 9.4.3

[Moz03] Mozart Consortium. The Mozart Programming System, version 1.3.0,
2003. Available at http://www.mozart-oz.org/. 5.1, 7, 7.6.5

[MS03] Mark S. Miller and Jonathan Shapiro. Paradigm Regained: Abstraction
Mechanisms for Access Control. In 8th Asian Computing Science Con-
ference (ASIAN03), pages 224–242, December 2003. 1.3.3, 1.3.8, 3.4.2,
3.4.4, 4.1, 4.3, 10.2.3

[MSC+01] Mark S. Miller, Marc Stiegler, Tyler Close, Bill Frantz, Ka-Ping Yee,
Chip Morningstar, Jonathan Shapiro, Norm Hardy, E. Dean Tribble,
Doug Barnes, Dan Bornstien, Bryce Wilcox-O’Hearn, Terry Stanley,
Kevin Reid, and Darius Bacon. E: Open source distributed capabilities,
2001. Available at http://www.erights.org. 1.3.4, 4, 5.1, 8.2.1,
10.1.1, 10.1.3, 10.4.1

[MTS05] Mark S. Miller, Bill Tulloh, and Jonathan S. Shapiro. The Structure of
Authority: Why Security is Not a Separable Concern. In Multiparadigm
Programming in Mozart/Oz: Proceedings of MOZ 2004, volume 3389 of
Lecture Notes in Computer Science. Springer-Verlag, 2005. 4.6, 8.5.4,
10.4

http://www.iep.utm.edu/l/logcon.htm
http://www.iep.utm.edu/l/logcon.htm

298 BIBLIOGRAPHY

[MYS03] Mark S. Miller, Ka-Ping Yee, and Jonathan Shapiro. Capability myths de-
molished. Draft available at http://zesty.ca/capmyths, 2003.
1.3.2

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15(12):1053–1058, 1972. 2

[Pea00] Judea Pearl. Causality. Models, Reasoning and Inference. Cambridge
University Press, 2000. 11.1.4

[Que06a] Luis Quesada. The bounded transitive closure problem, 2006. Available
at http://www.info.ucl.ac.be/˜luque/papers/btc.pdf. 9.4.1

[Que06b] Luis Quesada. Solving Constrained Graph Problems using Reachability
Constraints based on Transitive Closure and Dominators. Doctoral dis-
sertation, Université catholique de Louvain, Louvain-la-Neuve, Belgium,
September 2006. 9, 11.2

[QVD05] Luis Quesada, Peter Van Roy, and Yves Deville. The reachability prop-
agator. Research Report INFO-2005-07, Université catholique de Lou-
vain, Louvain-la-Neuve, Belgium, 2005. 9

[QVDC06] Luis Quesada, Peter Van Roy, Yves Deville, and Raphaël Collet. Using
dominators for solving constrained path problems. In PADL 2006 Pro-
ceedings, volume 3819 of Lecture Notes in Computer Science. Springer,
2006. 1.2, 9

[Red74] David D. Redell. Naming and Protection in Extendable Operating Sys-
tems. PhD thesis, Cambridge, MA, USA, 1974. 2.2.1, 8.2.1, 10.2.3

[Ree96] Jonathan A. Rees. A security kernel based on the lambda-calculus. Tech-
nical report, MIT, 1996. 4, 4.1.1, 10.5.2

[Rei04] Kevin Reid. [e-lang] Proposal: Auditors without unshadowable names,
August 2004. Mail posted at e-lang mailing list, available at
http://www.eros-os.org/pipermail/e-lang/
2004-August/010029.html. 10.5.2

[San88] Ravinderpal Singh Sandhu. The schematic protection model: its defini-
tion and analysis for acyclic attenuating schemes. J. ACM, 35(2):404–
432, 1988. 3, 3.2.3, 3.3.3, 11.1.1

[sat] Sat live ! http://www.satlive.org/. 11.2

[Sch] Christian Schulte. generic constraint development environment. http:
//www.satlive.org/. 11.2

[Sch02] Christian Schulte. Programming Constraint Services: High-Level Pro-
gramming of Standard and New Constraint Services, volume 2302 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, 2002. 2.3, 5.7.2,
7, 7.6, 7.6.5

[SCR03] Alfred Spiessens, Raphaël Collet, and Peter Van Roy. Declarative lazi-
ness in a concurrent constraint language. In 2nd International Work-
shop on Multiparadigm Constraint Programming Languages, pages 5–
18, September 2003. 7.6.2, 11.2

http://www.satlive.org/
http://www.satlive.org/
http://www.satlive.org/

BIBLIOGRAPHY 299

[SDN+04] Jonathan Shapiro, Michael Scott Doerrie, Eric Northup, Swaroop Srid-
har, and Mark S. Miller. Towards a Verified, General-Purpose Operating
System Kernel. Technical report, Johns Hopkins University, 2004. Avail-
able at
http://www.coyotos.org/docs/osverify-2004/
osverify-2004.pdf. 4

[SGL97] Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. Incremental
computation of dominator trees. ACM Transactions on Programming
Languages and Systems, 19(2):239–252, March 1997. 9.2.1

[SJV05] Fred Spiessens, Yves Jaradin, and Peter Van Roy. Using Constraints
To Analyze And Generate Safe Capability Patterns. Research Report
INFO-2005-11, Département d’Ingénierie Informatique, Université
catholique de Louvain, Louvain-la-Neuve Belgium, 2005. Presented at
CPSec’05. Available at
http://www.info.ucl.ac.be/∼fsp/rr2005-11.pdf.
7.7.2

[SM02] Marc Stiegler and Mark S. Miller. A Capability Based Client: The
DarpaBrowser. Technical Report Focused Research Topic 5 / BAA-00-
06-SNK, Combex, Inc., June 2002. Avalalbe at
http://www.combex.com/papers/darpa-report/. 1,
10.2.3, 10.3.3

[SM06] Marc Stiegler and Mark S. Miller. How Emily Tamed the Caml. Re-
search Report HPL-2006-116, HP Labs, Palo Alto, California, Aug
2006. Available at http://www.hpl.hp.com/techreports/2006/HPL-2006-
116.html. 5.1

[Smo95] Gert Smolka. The Oz programming model. In Computer Science To-
day, volume 1000 of Lecture Notes in Computer Science, pages 324–343.
Springer-Verlag, Berlin, 1995. 7.6.5

[Spi] Fred Spiessens. confused deputy. http://everything2.com/
index.pl?node=confused%20deputy. 4.6, 8.1.1

[SRP91] Vijay A. Saraswat, Martin C. Rinard, and Prakash Panangaden. Semantic
Foundations of Concurrent Constraint Programming. In Principles of
Programming Languages (POPL), pages 333–352, Orlando, FL, January
1991. 7.6

[SRRS01] R. Sekar, C. R. Ramakrishnan, I. V. Ramakrishnan, and S. A. Smolka.
Model-carrying code (mcc): a new paradigm for mobile-code secu-
rity. In NSPW ’01: Proceedings of the 2001 workshop on New security
paradigms, pages 23–30, New York, NY, USA, 2001. ACM Press. 11.4.1

[SS73] Jerome H. Salzer and Michael D. Schroeder. The protection of infor-
mation in computer systems. In Fourth ACM Symposium on Operating
System Principles, March 1973. 1.3.4, 8.3

[SSF99] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: a
fast capability system. In Symposium on Operating Systems Principles,
pages 170–185, 1999. 4

300 BIBLIOGRAPHY

[Stia] Marc Stiegler. The Confused Deputy.
http://www.skyhunter.com/marcs/capabilityIntro/
confudep.html. 8.1.1

[Stib] Marc Stiegler. The SkyNet Virus: Why it is Unstoppable; How to Stop it.
Talk available at http://www.erights.org/talks/skynet/.
10.6

[Sti00] Marc Stiegler. The E Language in a Walnut. 2000. Draft available at
http://www.erights.org. 10.2.2, 9.4.3

[SV05] Fred Spiessens and Peter Van Roy. The Oz-E Project: Design Guidelines
for a Secure Multiparadigm Programming Language. In Multiparadigm
Programming in Mozart/Oz: Extended Proceedings of the Second Inter-
national Conference MOZ 2004, volume 3389 of Lecture Notes in Com-
puter Science. Springer-Verlag, 2005. 2.2.2, 5.1, 10.1.3

[Tar83] Alfred Tarski. On the concept of logical consequence. Hackett Publish-
ing, Indianapolis, 1983. 5.7.1

[Tur37] A. M. Turing. On computable numbers, with an application to the
entscheidungsproblem. In Proceedings of the London Mathematical So-
ciety, volume 43 of 2, pages 544–546, London, UK, 1937. the London
Mathematical Society. 3.1.4, 4

[VD91] Pascal Van Hentenryck and Yves Deville. The cardinality operator: A
new logical connective for constraint logic programming. In Proceedings
of the Eighth International Conference on Logic Programming, pages
745–759. MIT Press, 1991. 9.5.1

[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of
Computer Programming. MIT Press, March 2004. 5.1, 6, 7.6.5, 10.2.1,
10.2.2, 10.3, 10.3.1, 9.4.3, 10.5.1

[WBDF97] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W. Felten. Ex-
tensible security architectures for java. In Proceedings of the sixteenth
ACM symposium on Operating systems principles, pages 116–128. ACM
Press, 1997. 3, 4.1, 4.5, 4.6, 8.1.2, 8.4

[wik] Confused deputy problem. http://en.wikipedia.org/wiki/
Confused deputy problem. 8.1.1

[WPJV03] Bart De Win, Frank Piessens, Wouter Joosen, and Tine Verhanneman. On
the importance of the separation-of-concerns principle in secure software
engineering. In ACSA Workshop on the Application of Engineering Prin-
ciples to System Security Design - Final Report (Serban, C., ed.), pages
1–10, September 2003. 8.5.4

[Yee02] Ka-Ping Yee. User interaction design for secure systems. In 4th Interna-
tional Conference on Information and Communications Security (ICICS
2002), 2002. UC Berkeley Technical Report CSD-02-1184. 10.3.3

BIBLIOGRAPHY 301

[YM00] Ka-Ping Yee and Mark S. Miller. Auditors: An extensible, dynamic code
verification mechanism. Available at
http://www.erights.org/elang/kernel/auditors/,
2000. 10.2.2

	Abstract
	Acknowledgments
	Table of Content
	List of Figures
	List of Tables
	Introduction
	Safety Analysis for Software Engineers
	Motivation

	Structure of the Thesis
	Concepts and Definitions
	Protection Systems
	Access Control Lists versus Capabilities
	Permission versus Authority
	The Principle of Least Authority (POLA)
	Safety Enforcement with Protection Systems
	Behavior based Safety Analysis
	Safe Approximation of Behavior
	Designing for Safety, Relying on Collaboration

	Thesis statement
	Contributions
	Major Contributions
	Minor Contributions and Side Contributions

	Overview of the Contributions
	A New Formal Model for Safety Analysis
	An Extended View on Protection States
	Refining the Protection State
	A Fixed Set of Subjects for a Finite Protection State
	Modeling Protection State Transitions
	Knowledge Behavior Models
	Safety Analysis with KBMs

	Safe Collaboration Language: SCOLL
	Example: The Caretaker
	Code Example for the Caretaker Pattern
	SCOLL code for the Caretaker Pattern
	The Interaction model
	The declare Part.
	The system Part
	The behavior Part
	The subject Part
	The config Part
	The goal Part
	Applications

	SCOLLAR
	Purpose
	Example

	I Foundations
	Formal Systems for Safety Analysis
	Formal Protection Systems
	Introduction
	Definitions
	The Safety Problem
	Is Safety Computable?
	Relying on Subjects in HRU Systems
	Discussion

	Take-Grant systems
	Protection Graphs
	De-Jure Rules
	De-Facto Rules
	Safety Analysis
	Safe Approximations of Information Propagation

	Discussion and Comparison
	Local Preconditions govern the Propagation of Authority
	Modeling Authority, not just Permissions
	Modeling Static Behavior
	Modeling Dynamic Behavior and Collaboration
	Modeling n-ary relations

	Modeling the Permission - Authority Relation
	The Relation Permission Access
	The Relation Permission Authority
	The Relation Access Authority
	The Relation Permission Delegation

	Capabilities
	The Original Concept of Capabilities
	The Supervisor
	Principals and their Processes
	C-lists and Spheres of Protection
	Segment Capabilities
	Inferior Sphere Capabilities
	Entry Capabilities
	Receive Capabilities
	Directory Capabilities
	Ownership of Capabilities
	Propagation of Capabilities

	Interpretation and Discussion
	Fixing ambient authority

	Object Capabilities
	One Type of Capabilities
	Capabilities Available by Initial Conditions
	Acquiring Capabilities by Parenthood and Endowment
	Acquiring Capabilities by Interaction
	The Authority attainable by using Capabilities

	DVH as Object Capabilities
	Restricting the use and the propagation of capabilities
	Capabilities compared to Access Control Lists

	II Main Contributions
	Knowledge Behavior Models
	Motivation
	A Preliminary Example

	Approach
	Safe and Tractable Approximations
	Refining Insufficiently Accurate Approximations

	The Basic Elements of KBMs
	Subjects
	Predicates and Facts
	System Rules
	Behavior Rules

	A Simple Model for Object-Capabilities with Creation
	Running Example
	Predicates for Subject Creation
	System Rules for Subject creation
	Behavior Rules for Creation
	The KBM of the running example
	The Initial Configuration
	Modeling a Proof-of-Access Tester

	Refining may.return/2
	Refined Predicates
	Refined Rules
	Overloading Knowledge Predicates
	A Proof-of-Access Tester with Exchange Behavior
	Proxying to an Access Tester

	More Expressive Power
	Restrictions
	A Generic Approach to Refinement
	Adding data
	Multiple Arguments
	Non Monotonic Changes
	Behavior and Knowledge Inheritance

	Formal Definitions and Proofs
	Knowledge Behavior Models
	Proving and Disproving Sentences
	Formal Notion of Safe Approximation
	Formal Notion of Aggregation
	Expressing Safety Problems with KBMs

	The Language SCOLL
	Objectives
	Structure of a Kernel SCOLL Program
	Declarations
	System
	Behavior
	Subject
	Configuration
	Goal

	Kernel SCOLL Syntax
	KBM Semantics
	The Complete SCOLL Language
	Multi-Headed Rules
	Using Wildcards
	Explicit Refinement Rules
	Safe Defaults

	SCOLL Syntax
	Possible Extensions
	Expressing Refinement Partial Orders
	Support for Parenthood and Endowment
	Support for Creation and Aggregation
	Goal Refinements
	Syntactic Sugar for Predicate Declarations
	Disjunctions in Rule Bodies
	Expressing Behavior Restrictions with Negated Predicates
	Expressing Behavior Conditional on Negated Predicates

	Modeling in SCOLL
	Modeling Authority Propagation
	Authority Propagation in the Presence of Global State
	Authority Propagation in the Presence of Ambient Authority
	Authority Propagation via Channels
	Authority Propagation and the Principle of Attenuation
	Authority Propagation and the Granovetter Property
	Authority Propagation and Collaboration
	Modeling Authority Propagation in Capability Systems
	Modeling Behavior

	Example : Inescapable Interposition
	Overview
	Aggregating by Clan and by Target

	Evaluation

	Pattern Analysis with SCOLLAR
	Overview
	Most Important features
	Restrictions Suggested By SCOLLAR

	Different Ways to use SCOLLAR for Safety Analysis
	Fixpoint Computation Mode
	Solution Mode

	Describing SCOLL Patterns
	Predicates and Facts
	Knowledge and behavior
	Rules

	The Distinct Parts of a SCOLL Pattern
	The system pane
	The behavior pane
	The subject pane
	The config pane
	The goal pane

	SCOLLAR's Web Based User Interface
	SCOLLAR Calculations
	Saved Patterns
	Saved Systems

	Overall CCP-based design
	Propagation
	Declarative Laziness
	Closed World Propagators
	Distribution
	Search

	Implementation
	Using Finite Domain Integers
	Alternative Approach using Finite Sets

	Patterns of Interaction and Collaboration
	Deputies that cannot be Confused
	Description of the problem
	Proposed Solutions
	Capability Based Deputies in SCOLLAR
	Analysis of the SCOLLAR results
	``Little Snitch'' : A User Experience with Reference Monitors

	Revokable authority
	The Caretaker Pattern
	Maximizing carol's behavior.
	Maximizing both alice's and carol's behavior

	Confinement
	Inescapable Interposition: The Membrane Pattern

	Delegation Considered Harmful for Confinement?
	The -Property
	Boebert's Proof
	A Closer Look at Delegation in Capability Systems

	Reference Monitoring
	Java's Sandbox
	Allowing Applets to Call Home
	Java's Sandbox and Authority Control
	Stack Walking
	Limitations of Stack walking Strategies

	III Related and Future Work
	Adding Authority Flow Constraints
	Authority Flowing in Graphs
	Flow Graph Constraints
	Definitions

	The DomReachability Constraint
	Constraints on the Reachability of Authority
	The Bounded Transitive Closure Problem (BTC)
	Safety and Liveness in terms of BTC
	Confinement by Interposition
	Confinement by Restricted Behavior
	Implication graphs: The Conditional BTC Problem

	Future Work
	Implication hypergraphs: The Cardinal BTC Problem
	Towards a Synergy of SCOLLAR and DomReachability

	Designing a Capability Secure Language
	Introduction
	Motivation
	Revisited Concepts
	Approach

	Basic Principles
	Mandatory Principles
	Pragmatic Principles
	Additional Principles: Support for the Review Process

	The Layered Structure of Oz-E
	Kernel Language
	Full Language
	Environment Interaction

	Cross-Layer Concerns
	Pragmatic Issues in Language Design
	Distributed Systems
	Reflection and Introspection

	Some Practical Scenarios
	Implement Guards at what Level?
	A Mechanism for Invitation and Safe Introspection

	Conclusions and Future Work

	Research Context and Agenda
	Related and Useful Formalisms
	The (Extended) Schematic Protection Model
	The Web-calculus
	The Refinement Calculus
	The Situation Calculus

	Approaches and Technologies to Optimize SCOLLAR
	Improved Expressive Power
	More Expressive Behavior
	More Expressive Goals

	Opportunities for Integration
	SCOLL Carrying Code

	Other Opportunities and Applications
	User Interface
	Type Safety Analysis

	Conclusions
	Publications
	References

